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Abstract. When cooking, it can sometimes be desirable to substitute
ingredients for purposes such as avoiding allergens, replacing a miss-
ing ingredient, or exploring new flavors. More generally, the problem of
substituting entities used in procedural instructions is challenging as it
requires an understanding of how entities and actions in the instructions
interact to produce the final result. To support the task of automatically
identifying viable substitutions, we introduce a methodology to (1) parse
instructions, using NLP tools and domain-specific ontologies, to gener-
ate flow graph representations, (2) train a novel embedding model which
captures flow and interaction of entities in each step of the instructions,
and (3) utilize the embeddings to identify plausible substitutions. Our
embedding strategy aggregates nodes and dynamically computes inter-
mediate results within the flow graphs, which requires learning embed-
dings for fewer nodes than typical graph embedding models. Our rule-
based flow graph generation method shows comparable performance to
machine learning-based work, while our embedding model outperforms
baselines on a link-prediction task for ingredients in recipes.

Keywords: Procedural instructions · Cooking recipes · Information
extraction · Ingredient substitution · Knowledge graph embedding

1 Introduction

Procedural instructions are a valuable source of information which provide
descriptions of how to carry out a task or achieve some goal. Such instructions
are typically presented in a stepwise fashion, breaking down the overarching task
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into a series of individual steps. A prime example of this is a cooking recipe,
which specifies a set of ingredients along with a number of steps describing how
to combine and modify those ingredients to form the final dish.

When performing tasks that are described by such instructions, it is possi-
ble to modify the instructions to complete the task in a slightly different way
while producing similar results. In cooking, this can be observed when people
substitute ingredients in the recipe – many ingredients exist that can be replaced
and result in a dish that is “close enough” to the original. However, it can be
difficult to determine which modifications of the instructions are valid because
it requires an understanding of the entities involved with the instructions, the
actions taking place, and the outcomes produced by different actions.

Fig. 1. A running example recipe and its flow graph. Intermediate nodes are labeled
as A, B, etc. for convenience.

Gaining a comprehensive understanding about the entities and actions in
procedural instructions presents a major challenge. Instructions often are not
well structured or specific, as they rely on common sense. For example, given the
instructions “(1) Place bacon in a skillet (2) Cook over medium heat”, we infer
that the instructions are telling us to cook the bacon that we just placed in the
skillet. Correctly parsing these steps might also involve background knowledge,
such as alternative names for similar entities (e.g., pan and skillet). Furthermore,
steps are not necessarily completed sequentially, which requires us to identify
branching instructions and co-references of similar entities from earlier steps.

One method that can help provide the structure necessary to represent this
information and identify viable substitutions is to form a flow graph of the
instructions. A flow graph can represent the instructions as a rooted, directed
acyclic graph, with the root node representing the final result of the instructions



EaT-PIM 163

(e.g., the dish produced by a recipe), leaf nodes representing the entities (e.g.,
the ingredients and equipment), and edges capturing the actions taking place
to produce intermediate results (e.g., mixing flour and water to form a batter).
Representing the procedural instructions in this form can then be utilized to
further identify which modifications can be made to the instructions.

A running example recipe is illustrated in Fig. 1. We can see several steps
that specify how to use the ingredients, as well as equipment such as the skillet
and bowl, to make the recipe. The recipe’s corresponding flow graph captures
these ingredient and equipment entities as leaf nodes, and their usages – i.e.,
verbs such as “cook” and “drain” – are captured as edges.

In order to form such flow graphs from procedural text, it can also be ben-
eficial to incorporate domain-specific information sources. For example, ontolo-
gies can provide authoritative knowledge about entities that has been manually
curated by domain experts. This knowledge in turn can inform the information
extraction process and augment the resulting flow graph.

In this paper, we present the EaT-PIM (Embedding and Transforming Pro-
cedural Instructions for Modification) methodology to extract information from
domain-specific instructions – specifically, cooking recipes – to convert them into
flow graphs. We then present an approach to learn embeddings for entities and
actions that occur in the flow graphs such that we can use the embeddings to
identify plausible modifications that can be made to the instructions. Intuitively,
our approach aims to learn embeddings that capture the flow of entities and
actions from the flow graph, which in turn can be used to dynamically compute
the output of a recipe after performing an ingredient substitution.

Our contributions are as follows: (1) Present a rule-based method to generate
flow graphs from instruction text, leveraging domain ontologies and dependency
parsing tools. (2) Introduce a novel graph embedding strategy for flow graphs,
which aggregates nodes to better capture instruction steps and dynamically cal-
culates intermediate results. Our method requires learning embeddings for signif-
icantly fewer nodes compared to baseline graph embedding models while show-
ing top performance at a link prediction task for cooking recipes. (3) Present a
method to identify plausible entity substitutions in flow graphs using our embed-
ding calculation approach. Further, this method can handle new combinations
of entities and actions without additional training.

2 Problem Formulation

Here, we give a brief overview of our main problem formulation and definitions.
While this work focuses specifically on recipes, the approach can be extended to
procedural instructions in different domains in a similar manner.

2.1 Recipe Modeling

A recipe R contains two pieces of information – a list of steps in natural language,
SR, and the set of ingredients used in the recipe, IR. SR = [Si|i = 1..n] is a list of
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individual sentences, ordered sequentially as in recipe steps. Each ingredient Ij ∈
IR is a distinct ingredient defined by the recipe. We represent the ingredients and
recipes following Resource Description Framework (RDF) standards to enable
better integration with ontology and knowledge graph resources.

2.2 Flow Graph Representation

A key property of procedural instructions is that the main task of the instructions
is to create an output entity through some combination and transformation of
input entities. A recipe takes raw ingredients, applies transformations (such as
cutting) to them, and combines them to form the final dish. Transformation
that are applied may change properties of the original inputs (such as “diced
tomatoes”), and the instructions provide us with a trace of how such intermediate
results were formed. As such, it is sensible to consider representing instructions
as a “flow” that captures how input items are processed through the instructions.

Our goal is to parse the instructions with the set of ingredients contained in
R to form a flow graph. For this work, we define a flow graph as follows:

Definition 1. A flow graph is an RDF graph of triples (h,r,t), denoting a
relation r from entity h to entity t, with the following properties: (1) the graph
contains no cycles; (2) the graph has a single output node that is reachable by
all other nodes; (3) all incoming relations to a node have the same label; and (4)
all domain-specific entities have no incoming relations.

In our definition, we distinguish domain-specific entities as equipment or
ingredients that are specified in the recipe text. All such entities act as leaf
nodes in the flow graphs. Other nodes in the flow graph, which have incoming
relations, are denoted as intermediate nodes. In turn, the relations in the flow
graphs correspond to the actions taking place in the recipe instructions, and their
connections and directions indicate how the entities and intermediate nodes are
being processed through the flow graph.

Example 1. Consider our running example in Fig. 1. This flow graph contains
no cycles and has a single output node G. All incoming relations to intermediate
nodes also share the same label. Lastly, all entities corresponding to ingredients
or cooking equipment are leaf nodes. We also can observe how the edge labels
correspond to actions taking place in the recipe.

Our use of the terminology “flow graph” resembles that of some prior works
[7,15,27], but we make several distinctions surrounding what information is cap-
tured and how it is represented. Our requirement that entities must be leaves
in flow graphs is not shared by previous definitions. Additionally, prior mod-
els do not have restrictions that incoming edges must have the same label, and
intermediate results (as we model in our flow graph definition) are not modeled.

We also note the omission of several details from our example recipe’s instruc-
tions. For example, the details to cook the bacon “over medium high heat” and
“until crispy” are omitted in our flow graph. For the scope of this work, we
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chose to focus on capturing and using the core information about actions and
entities while dropping additional qualitative modifiers. Another point of omis-
sion is information about what role each entity plays in an action, as in how the
bacon is being placed into the skillet. For the scope of this work, we simplify
this information to only capture which entities were involved in the action. In
these omissions, we opted to favor simplification of the flow graph at the cost of
semantic accuracy due to the difficulty of correctly parsing the instructions.

Lastly, we omit information from sentences that are unrelated to cooking
the actual recipe. Whenever ingredients that weren’t included in the recipe’s
ingredient list occurred, we considered it extraneous information.

3 Flow Graph Generation from Instructions

To construct flow graphs, we make use of natural language processing (NLP)
tools, a part-of-speech (PoS) tagger and dependency parser, as well as ontologies
to provide knowledge about domain-specific entities. After using such tools to
extract relations between entities and actions from each step in the recipe, the
steps are combined together to form a flow graph. We note that our data and
methods focus only on handling English recipe texts.

3.1 Parsing Instruction Text

The first step we apply is to perform dependency parsing and PoS tagging over
each sentence in the recipe’s instructions. Our goal is to find verbs and their
associated nouns; these verbs are the actions taking place in the instructions.
In our experiments, we perform this step using spaCy’s [9] pretrained language
models. An example of the dependency tree that is produced by spaCy can be
seen in Fig. 2. Based on both the PoS and dependency tags produced by spaCy,
we devised a rule-based method1 to connect nouns and verbs occurring in each
sentence to serve as the foundation for forming the recipe’s flow graph.

Fig. 2. An example dependency tree produced for a sentence using spaCy.

After processing each step in the recipe, we are left with a list of information
pertaining to verbs and nouns that are directly interacting with each other in
each step of the recipe. For example, from the example sentence in Fig. 2, we
extract two tuples of verb-noun relations – (“place”, “bacon”), and (“place”,
1 We refer to Sect. 1 in our supplemental material for further details on this process.
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“large deep skillet”). The dependency relation between each verb and noun is
retained for use in forming the flow graph. We discarded prepositions as well as
adverbs to omit some details as noted in the previous section.

Correcting Parses: We found that parsing errors would occur frequently for
sentences that were particularly terse or used implicit subjects (e.g., “Brown beef
in the pot.”). Such sentences have the subject (i.e., the person cooking the recipe)
omitted, as is typical with many imperative sentences, and were ambiguous in
how they should be parsed (e.g., “brown” may be a verb or an adjective).

We expect each sentence in the instructions to provide some meaningful
action to perform, so in cases where no verb is found, we re-run the dependency
parse with an augmented version of the sentence. Instructions are often presented
as imperative sentences, and in English the imperative mood is typically (1)
in the present tense and (2) in the second person. Based on this knowledge,
in practice we found that simply adding a subject – the word “you” – to the
beginning of the sentence resolved many such errors. For example, “you brown
beef in the pot.” resulted in correctly tagging “brown” as a verb.

Filtering. To better focus on modeling objects that are relevant to the instruc-
tions, we can use a domain-specific ontology to filter out extraneous information.
In our experiments we use FoodOn [3], an ontology containing information about
thousands of different foods and their relations, and filter out entities. We do this
by matching noun-phrases from recipe texts to FoodOn classes based on their
class labels, alternative names, and synonyms. We convert all noun-phrases and
class names into one-hot vectors, weighted by TF-IDF measures, and calculate
their cosine similarity to determine matches. In cases where a sufficiently high-
confidence match was not found, we consider the noun irrelevant for our task
and discard the information. We also retain links between ingredients in flow
graphs and FoodOn classes for later use to train embeddings.

3.2 Forming Flow Graphs

After parsing instructions, we have a list of tuples containing verbs, nouns, and
their relations in each step. We proceed to form a flow graph of the overall recipe
by forming small graphs for the content of each step and then connecting the
graphs for each step together into a single flow graph.

Fig. 3. Examples illustrating how two entities can form a single output (left) and how
multiple verbs are applied sequentially to an entity (right).
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First, to form minimal graphs from each step, we use verb-noun relations
that were detected from the dependency parser. The verb is used as the edge
label to connect the nouns to an output node. In cases where multiple verbs
were used in the step, we assume that the noun and intermediate node content
in the step are connected sequentially (as they occur in the step’s sentence). An
example of this step can be seen in Fig. 3.

Using the minimal graphs from each step in the instructions, we move on to
connect each step together to form the overall flow graph. We consider 3 cases:
(1) a step includes a reference to an entity that has been used in a previous step;
(2) a step’s dependency parse includes a verb with no direct subject or object;
and (3) a step follows sequentially from the previous step.

Case 1: In the first case, we check for noun occurrences in each step to see
if the same ingredient is being used. If such a situation exists, we connect the
two steps together by adding an edge from the output of the earlier step to the
first intermediate node in the later step. We check each step in order, prioritizing
earlier steps when adding connections. An example demonstrating how two steps
would be connected in this kind of case can be seen in Fig. 4.

Fig. 4. An illustration connecting two steps in the running example together.

Case 2: For the second case, we use dependency relations between words that
were obtained from the dependency parser. If the step includes a verb but has
no relations to a direct subject or direct object, we infer that the verb is acting
on the output of the previous step. An example of this situation can be seen in
the first two steps of our running example, as “(1) Place bacon in a large, deep
skillet”, “(2) Cook over medium high heat until crispy”. We can infer that the
second step means we must cook the bacon – in the dependency parse result,
“cook’ in step 2 contains no direct subject or object.

Case 3: If either of the previous two cases do not apply, we simply connect steps
together sequentially. In this case, the output node of each step is connected to
the first intermediate node in the next step. The edge for this connection copies
the same label as other incoming edges for that intermediate node, since we
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can assume that the output of the step is having the same actions applied as
other entities in that step. Sequential connections have been shown to be a good
baseline for creating flow graphs in the domain of cooking [10].

Recipe-Specific Cases: Another consideration for a recipe’s flow graph is that
we expect to see all of the ingredients specified by the recipe. While this some-
times is trivial, there are often cases where ingredients are referred to by alternate
names within the recipe steps or as a group of ingredients (e.g., instructions to
“add herbs” rather than individually listing out each herb). In cases where not all
relevant ingredients from the recipe have been included, we identify leaf nodes in
the flow graph that are most similar to the missing ingredients. We used a mea-
sure of semantic similarity, wpath [31], over FoodOn’s ingredient class hierarchy
to determine which node is the most similar.

We also must consider a recipe-specific special case for phrases such as “all
ingredients” and “remaining ingredients.” These phrases occur fairly often in
recipes written by non-experts and rely on the assumption that we know all
ingredients in the recipe ahead of time. They also rely on sequential knowledge
about which ingredients have already been used in the recipe. When either of
these cases occur, we check the flow graph for all instances of ingredient usage
in prior steps and add new edges for any ingredients that have not been used
yet as the “remaining” ingredients.

4 Flow Graph Embedding

A key motivation for using flow graphs in our work is to enable us to view actions
that take place in the instructions as transformations on the input nodes. This
perspective is similar that of common translational knowledge graph embed-
ding (KGE) techniques, such as TransE [2]. Given a triplet (h,r,t), such KGE
methods model t to be the result of applying some transformation r on h. In
TransE, embeddings are learned such that h + r ≈ t given h, r, t ∈ R

k. In this
way, the relation r is used as a transformation on the entity h to produce the
result entity t. Extending this idea to our flow graphs, our aim is to model our
relations – i.e., actions such as “cook” or “crumble” – as transformations on the
input ingredients to produce output intermediate nodes.

However, our flow graphs for procedural instructions are not well suited to
directly apply KGEs that are trained over triplets of data. While KGE models
view each triple independently as indicating a single factual statement, in our
flow graphs all of the incoming nodes contribute to the output. Additionally,
standard KGE model training over triples would require us to learn embeddings
for all intermediate nodes, which is undesirable for our case as the number of
unique intermediate nodes rapidly increases with the number of flow graphs.

4.1 Embedding Strategy

To address the aforementioned issues, we incorporate the idea of performing
aggregation on incoming nodes in the flow graph. This aggregation should serve



EaT-PIM 169

to provide additional context when training embeddings such that all ingredients
involved in a recipe’s step are considered while training. Additionally, we address
the issue of handling intermediate nodes by calculating the output of applying
transformations (based on relation embeddings) to entity embeddings during
each training step. Figure 5 illustrates how entity embeddings are aggregated and
calculated (calculations past node C are omitted for brevity). The aggregation is
performed by taking the mean of the input nodes, while the output is calculated
similar to TransE’s h + r = t formulation. Leveraging the fact that all incoming
edge labels in our flow graphs are the same for a given intermediate node, each
aggregation is treated as a single “head” entity in the KGE model’s (h, r, t)
triplet, and the embeddings for intermediate nodes are calculated on the fly.

Fig. 5. An illustration of how we aggregate input nodes, within the dotted lines, and
apply the embedding of the action to produce intermediate nodes.

Distance: We define the distance metric used during each training step in
our model in a recursive fashion by defining a “triplet” (hR, rR, tR), where
hR, rR, tR ∈ R

k, for each recipe R. Our goal during training is to minimize
the distance |hR + rR − tR|, following from the distance formulation of TransE
which minimizes the distance |h + r − t|.

Given a flow graph FR, let Iv denote the set of nodes with incoming edges to
node v and lv denote the label for incoming edges to node v. For the flow graph
FR and its output node vo, we can then define hR as the output of Algorithm 1.
For the given recipe, rR = rlvo is then defined as the last action that takes place
in the recipe, and tR = hvo

is the embedding of the recipe’s output node.

Example 2. Applying Algorithm 1 to our running example recipe, the output
node vo=G. The incoming nodes IG = [F ], so we can calculate the recipe’s
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embedding as hR = Aggregate([RecursiveAgg(F )]). Stepping through the pro-
cedure for RecursiveAgg, we will reach line 5 where Recursive Agg is called
again on the incoming nodes to F, IF = [E, Tomato]. Tomato is a leaf node, while
E will once again enter a recursive call which we omit for brevity. Back to node F,
in line 6 we will use node F’s incoming edge “:mix in” and its embedding r:mix in,
and return hR = r:mix in+ Aggregate(mean([hTomato, RecursiveAgg(E)])).
This value is then used with the output node’s incoming edge, r:serve, to calculate
hR + r:serve as this recipe’s calculated output embedding value.

Training Objectives: The distance between the recipe’s calculated “triplet”
(hR, rR, tR) is then computed as distR = |hR + rR − tR|. Following standard
training for KGE models using this distance metric, the loss is optimized as
Lp = − log σ(γ − distR), where γ is a fixed margin and σ is the sigmoid function.

Algorithm 1. Flow Graph Output Embedding Calculation Pseudocode
Input A flow graph’s output node vo, incoming nodes I, incoming edge labels l
Output Calculated head vector hR ∈ R

k

1: function RecursiveAgg(v)
2: if v.isLeafNode then
3: return hv

4: else
5: inNodes = [RecursiveAgg(vj) for vj ∈ Iv]
6: return Aggregate(inNodes) + rlv
7: end if
8: end function
9: function Aggregate(EmbeddingList)
10: return mean(EmbeddingList)
11: end function
12: hR = Aggregate([RecursiveAgg(vj) for vj ∈ Ivo ])

We additionally follow best practices for training KGE models by utilizing
negative sampling. For a given recipe R, negative sampling is performed for an
incorrect tail entity tR′ �= tR and an incorrect “head” flow graph hR′ �= hR. tR′

entity points to another randomly selected recipe output, and hR′ is constructed
by randomly replacing input nodes in R’s flow graph. k negative samples were
collected for each training step, and the negative sampling loss was calculated for
the negative head and tail samples as Ln = − 1

k

∑k
1 log σ(|hR + rR − tR′ | − γ) −

1
k

∑k
1 log σ(|hR′ + rR − tR| − γ). The total loss is calculated as L = Lp + Ln.

By using our recursive aggregation strategy, we can calculate embeddings for
intermediate nodes rather than learning them explicitly. The only nodes in our
flow graph data that we learn embeddings for are the ingredient leaf nodes and
the recipe’s final output node vo.

In order to incorporate external domain-specific knowledge, we also include
triples from FoodOn to perform training. We connect classes from FoodOn to
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ingredients in our recipe dataset, identified during the flow graph generation
stage, and perform normal training of the TransE model over this data.

4.2 Replacement Techniques

Once our entity embeddings h ∈ R
k and relation embeddings r ∈ R

k have been
trained, we can apply the same aggregation techniques used during training
– to calculate the “output” embedding, transforming the inputs – to perform
modification and substitution of entities in a recipe.

Given a recipe’s flow graph FR, our model will have learned an embedding
for the recipe’s final output, hvo

. Additionally, we can use the entity and relation
embeddings for the nodes and edges in FR to calculate the recipe’s output as
well (once again following from the intuition that the embeddings hR+rR = tR).
The original recipe’s learned output node embedding, hvo

, and the calculated
output embedding of the original recipe’s flow graph, tR, can be used to identify
plausible substitutions of ingredients by replacing nodes in FR and calculating
a new output embedding.

Fig. 6. Substituting “Bacon” with “Pork Sausage” in our running example recipe.

For an ingredient node v ∈ FR that we wish to replace, we simply can swap
v with a new node vs as seen in Fig. 6. We also replace all edges in FR to
which v was connected. Then, following the procedure from Algorithm 1, we can
calculate a new output embedding for the flow graph with a node substitution
as tR′ . To determine whether the substitution seems “good” or not, we can then
compare the cosine similarity of the newly calculated embedding tR′ with the
original learned embedding hvo

or the original calculated embedding tR. This
process can then be repeated over a number of substitute ingredient options to
produce a ranking of which substitute is the “best” based on how similar the
newly calculated result is to the original.

A result of our embedding and substitution strategy is that it is robust in
its ability to handle previously unseen recipes. Assuming that embeddings have
been learned for the relevant ingredients and actions, the output embedding
for a new recipe’s flow graph is dynamically calculated and would require no
additional training. A completely novel recipe can therefore have an embedding
representing its output, which in turn allows us to perform our substitution
strategy.



172 S. S. Shirai and H. Kim

5 Evaluation

5.1 Flow Graph Generation

We evaluate the quality of our flow graph generation method by comparing
against a dataset of recipe annotations and flow graphs published by Yamakata
et al. [27]. However, the level of detail, included concepts, and formulation of their
flow graphs differs from that of our work. We therefore performed preprocessing,
which included adjusting the graph’s connections so that actions were edges
rather than nodes.2 After performing our preprocessing step, we evaluate F-
measure by comparing edges in our generated graph versus the ground truth.

5.2 Embedding Flow Graphs

To evaluate the quality of our embeddings, we frame our problem as a knowledge
graph completion task for individual flow graphs. Given a recipe flow graph and
the learned embedding for its output node, we remove a single ingredient and
then rank the ingredient that is most likely to fit in to the flow graph. Following
our ingredient substitution procedure from Sect. 4.2, candidate ingredients are
used as “substitutions” to calculate recipe output embeddings, and their similar-
ity to the expected embedding of the recipe is used to rank ingredients. Our goal
for this experiment is to demonstrate that our EaT-PIM method can effectively
re-identify a missing ingredient from a recipe, which in turn would suggest that
we might be able to identify plausible substitutions by selecting ingredients that
are similar to the “missing” ingredient being replaced.

Dataset: We conduct our experiments using recipe data from Food.com [14].
We randomly selected a subset of the data consisting of 20,000 recipes, which
included 6,142 distinct ingredients. We generated flow graphs for each recipe,
and this data was further split into training, validation, and test data using a
70%, 15%, 15% split. Embeddings were trained using data from the training set
as well as data from FoodOn [3], which similarly was split for training.

Baselines: Our first baseline uses a simplified problem setup, which omits the
flow graph data and instead ranked missing ingredients based on ingredient co-
occurrence in recipes (denoted COOC). The sum of co-occurrence probabilities
between a candidate ingredient of all ingredients in a target recipe was used to
produce a score, which was then used to rank the missing ingredient.

Our next set of baselines utilize standard KGE models. To enable train-
ing over triplets of data, we re-introduce explicit intermediate nodes for flow
graphs in these baselines. We train two translational distance models, TransE
[2] and RotatE [22], which are well suited for modeling compositional relations.
We contrast these with two semantic matching models, DistMult [29] and Com-
plEx [23], which are better suited for modeling symmetric and antisymmetric
2 We refer to Sect. 2 in our supplemental material for details on the preprocessing.
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relations. RotatE and ComplEx also learn embeddings in complex vector space.
These four baselines were trained using embedding sizes of 200, 300, and 400
dimensions, and the best results are reported. Lastly, we train a graph neural
network (GNN)-based embedding model from [17] (denoted GNN (Nathani et
al.)), which uses a Graph Attention Network [24] together with a convolutional
layer [18] to perform link prediction. For each model, we perform link prediction
for intermediate nodes connected to input ingredient and rank the missing ingre-
dient to calculate performance. This ranking is performed in a filtered setting –
i.e., the ranking is not penalized if a true triple is highly ranked.

For our final baseline, we introduce an additional TransE-based baseline that
is trained in a similar manner to EaT-PIM (denoted TransE (flow graph path)).
Rather than explicitly learning embeddings for intermediate nodes, this model
is trained by using the path of edges between ingredients and the recipe output.
This model differs from EaT-PIM in that no node aggregation is performed.

5.3 Results

Flow Graph Generation: EaT-PIM’s methods to convert recipe texts to flow
graphs yielded a precision of 0.638, recall of 0.566, and F1 score of 0.600 when
comparing them to the ground-truth graphs. To give a rough comparison (albeit
for a slightly different task3), the original results reported by Yamakata et al.
[28] indicate an F1 of 0.433 for their full pipeline. Considering that our methods
did not require any annotated training data, our results appear competitive with
those presented in the original dataset publication.

Embedding Flow Graphs: Table 1 displays the mean reciprocal rank (MRR),
HITS@3, HITS@5, and HITS@10 for our EaT-PIM method and the baselines.
MRR is calculated as the average of 1/rankt, where rankt is the rank of the true
entity t for each datapoint. HITS@K is calculated as the proportion of inputs
for which the correct entity t is within the top K ranks.

Table 1. Results for ranking missing ingredients in recipe flow graphs.

Model MRR HITS@3 HITS@5 HITS@10

COOC 0.132 0.138 0.189 0.281

DistMult 0.012 0.012 0.015 0.021

ComplEx 0.017 0.018 0.023 0.032

RotatE 0.118 0.120 0.163 0.242

TransE 0.151 0.158 0.211 0.301

GNN (Nathani et al.) 0.068 0.068 0.88 0.124

TransE (flow graph path) 0.172 0.177 0.206 0.254

EaT-PIM (ours) 0.286 0.355 0.437 0.520

3 Further details are discussed in Sect. 2 of our supplemental material.
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EaT-PIM is able to outperform the baselines by a large margin for the task
of re-identifying missing ingredients from recipes. Surprisingly, we find that the
basic TransE model shows the best performance among our standard KGE base-
lines, followed by RotatE. The ability for these two models to capture compo-
sitional relations shows a stark contrast in performance compared to DistMult
and ComplEx, which appear to be poorly suited for our task.

The TransE (flow graph path) baseline shows the second best performance.
Compared to the standard TransE model, performing training and predictions
based on the entire path from the ingredient to recipe output appears to have
provided minor benefits. Our approach to perform aggregation improves upon
this further – when applying the embedding trained through EaT-PIM to per-
form ingredient prediction only based on the path from the ingredient to the
recipe, the MRR increases to 0.260. This suggests that EaT-PIM’s approach to
aggregate nodes was particulary useful to learn good embeddings, while apply-
ing EaT-PIM’s substitution method to perform the link prediction granted an
additional 10% increase in performance.

Discussion: EaT-PIM’s ability to dynamically compute intermediate nodes
allows it to learn embeddings for significantly fewer entities than standard KGEs
require (40,500 entities in EaT-PIM versus 272,000 in baselines). This can be
beneficial during training, as less memory is needed to load all of the embeddings.
Additionally, EaT-PIM’s simple model is less resource intensive compared to
more advanced models such as the GNN. The GNN in our experiment required
190 MB of memory to store 50 dimensional embeddings of nodes along with the
convolutional neural network, while EaT-PIM’s 200 dimensional embeddings
only needed 30 MB. This benefit would increase further if training is performed
for more recipes, suggesting strong potential for scalability using EaT-PIM.

Table 2. Examples of top ranked substitutions in two recipes.

Recipe Target ingredient Top 3 substitutes

Pork marinate Pork Boneless pork, Rib, Pork loin roast

Mashed potatoes Red potato Dried thyme, all purpose flour, Chicken

Regarding our application of these embeddings to ingredient substitutions,
while it is challenging to evaluate due to subjectivity issues, we observe that using
EaT-PIM to rank substitutions generally produces reasonable results. Table 2
shows examples of ranking substitutions for a target ingredient in a specific
recipe. The top substitutions for “Pork” are all varieties or names of pork. On
the other hand, we observe some less desirable substitutes, such as thyme, for
“Red Potato” in our example. While work remains to improve the consistency
of substitution ranking, our methods can provide some utility by comparing
substitutions across different recipes. For example, Table 3 displays the relative
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rankings of three potato substitutes4 in different types of recipes.5 While it is
difficult to judge how correct these relative rankings are, it demonstrates that
the suitability of each ingredient varies based on the recipe at hand.

Table 3. A comparison of relative rankings of potato substitutes in three recipes.

Recipe: Mashed Potato

Substitute Ranks

1. Jicama

2. Cauliflower

3. Rutabaga

Recipe: Potato Gratin

Substitute Ranks

1. Cauliflower

2. Jicama

3. Rutabaga

Recipe: Healthy Soup

Substitute Ranks

1. Rutabaga

2. Cauliflower

3. Jicama

6 Related Work

Ingredient Substitution: Previous works on ingredient substitution have
explored methods such as rule-based substitutions in TAAABLE [5] and Intel-
limeal [21]. DIISH [20] applied a substitutability heuristic based on ingredient
co-occurrence and similarity. A major limitation of such works was that they did
not explicitly incorporate detailed information about cooking instructions.

Workflow Extraction: Extracting workflows instructions has been explored in
the domain of cooking using methods such as frame- and pattern-based extrac-
tion [19] and case-based reasoning [4]. Semantic representations of procedu-
ral knowledge were proposed in [30], including annotations of pre-conditions,
actions, and purpose. Outside of the cooking, explicit representations of proce-
dural instructions have been investigated a variety of domains [1,6,12,16]. Our
work shares some similarities to prior works in the use of ontologies to identify
relevant entities. However, we do not rely on manually constructing templates to
extract workflows, and the flow graph representation of our methods also differs.

Flow Graphs: The flow graphs modeled in our work shares similarities with
past works such as [13,15,27,28]. Many previous works using recipe flow graphs
use annotations [13,25,27], either by directly using the annotations or learning
to predict labels and relations based on a training set, while our work does not
rely on annotated data. A method demonstrated in [10] formed flow graphs in
an unsupervised fashion, but it relied on an external parser to classify words.

Knowledge Graph Embedding: Beyond the baseline models applied in our
experiments [2,22,23,29], a variety of distance metrics have been proposed for
training KGE models [26]. Such models treat triples in the graph as indepen-
dent facts, while our motivation of applying them to flow graphs would want
to consider the combination of multiple triples together to produce an output.

4 Jicama and rutabaga are often cited as healthy potato substitutes.
5 We refer to Sect. 3 in our supplemental material for details on the example recipes.
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Embedding graphs using graph neural networks (GNN), such as [8,11,24], have
also gained traction in recent years. GNNs have demonstrated the benefits of
aggregating information from neighboring nodes. Our embedding approach takes
inspiration from such methods in that we also aim to aggregate input nodes.

7 Conclusion

We present EaT-PIM, which consists of two main methods. First, EaT-PIM
converts procedural instructions into flow graphs using NLP tools and domain-
specific ontologies. Using the generated flow graphs, EaT-PIM trains an embed-
ding model using a strategy that allows us to aggregate input information and
dynamically compute intermediate node representations within flow graphs. Our
evaluations demonstrate strong performance of EaT-PIM in both generating flow
graphs and performing link prediction for ingredients in recipes. Future work
includes exploration of more intricate aggregation strategies in the embedding
and applying EaT-PIM to instructions from different domains to explore substi-
tutability for more diverse types of entities.

Supplemental Material Statement: Supplemental materials and source codes are
made available at https://github.com/boschresearch/EaT-PIM.
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