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Abstract. Grounding dialogue system with external knowledge is a
promising way to improve the quality of responses. Most existing works
adopt knowledge graphs (KGs) as the external resources, paying atten-
tion to the contribution of entities in the last utterance of the dialogue for
context understanding and response generation. Nevertheless, the corre-
lations between knowledge implied in the multi-turn context and the
transition regularities between relations in KGs are under-explored. To
this end, we propose a Relation Transition aware Knowledge-Grounded
Dialogue Generation model (RT-KGD). Specifically, inspired by the
latent logic of human conversation, our model integrates dialogue-level
relation transition regularities with turn-level entity semantic informa-
tion. In this manner, the interaction between knowledge is considered to
produce abundant clues for predicting the appropriate knowledge and
generating coherent responses. The experimental results on both auto-
matic evaluation and manual evaluation indicate that our model outper-
forms state-of-the-art baselines.

Keywords: Knowledge-Grounded Dialogue · Response generation ·
Relation transition regularity

1 Introduction

Knowledge-Grounded Dialogue Generation (KGD) aims at generating an infor-
mative response based on both dialogue context and external knowledge [6,9].
Current works typically utilize structured knowledge graphs (KGs) [16,32,38] or
unstructured texts [9,36] as knowledge resources. Incorporating external knowl-
edge related to the dialogue context has proven to alleviate generating mean-
ingless and bland responses caused by traditional generative models, such as “I
don’t know” and “You are right” [11].
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Fig. 1. An illustrative example from KdConv [39]. Based on the dialogue context (a)
and the related KG (b), KGD is required to generate a response (c) guided by the
MHKT-Path (d). The bold denotes the core entities in the dialogue, and the Italic
denotes related knowledge values involved in the dialogue.

The existing works mainly focus on two aspects in KGD task: knowledge-
enhanced context understanding [2,29] and knowledge-fused response genera-
tion [13,14]. Traditional efforts [2,6,39] simply treat the relevant external knowl-
edge as the textual complementary to the dialogue context for both context
understanding and response generation, neglecting considerable structural infor-
mation in KGs. Some recent works [8,16,32] realize that the correlation between
entities plays an important role in continuing dialogue, thus propose to excavate
the valuable structural information between entities in the knowledge graph to
predict the entities that might appear in the next response. The predicted enti-
ties are further used to guide the response generation. For example, DialKG
Walker [16] treats the entities mentioned in the last utterance as the start-
ing nodes and further retrieves relevant entities from KG within two hops.
DuConv [30] pre-defines a topic goal including two entities for each dialogue,
which guides the model to start with the first entity and gradually transition to
the second one.

Despite their great contributions, there are two main drawbacks: on the one
hand, the entity-guided KGD methods [16,32] consider the entities in the dia-
logue as the only guidance knowledge for context understanding and response
generation, which neglects the importance of relations between entities in the
KG. However, the regularity behind human conversation can be summarized as
a sequence of topics, where each topic may correspond to a relation between
entities rather than a single entity in the KG. On the other hand, the existing
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KGD methods [8,16] only care about the information in the last dialogue turn for
predicting the subsequent knowledge, which is insufficient to learn how human
transfer topics across a multi-turn dialogue. Taking Fig. 1 as an example, both
badcase 1 and badcase 2 are flawed generated results based on the dialogue con-
text. Badcase 1 demonstrates that the generated response might be redundant
and incoherent without modeling multiple turns of knowledge, while badcase 2
reveals an abrupt transition in the topic since the latent relation transition path
throughout the dialogue is ignored.

In this paper, we propose a novel KGD model: Relation Transition aware
Knowledge-Grounded Dialogue Generation (RT-KGD), which models the knowl-
edge transition across multi-turn dialogue by integrating dialogue-level relation
transition regularities with turn-level entity semantic information. Specifically,
we obtain all the relations and entities contained in the multi-turn dialogue con-
text to construct a so-called Multi-turn Heterogeneous Knowledge Transition
Path (MHKT-Path), which can be viewed as a subgraph of the external KG inte-
grated with the sequential information of relations and entities in the multi-turn
dialogue. Based on the constructed MHKT-Path, a knowledge prediction module
is proposed to retrieve the triplets that might appear in the subsequent response
from the external KG, and they are further fused for triplet prediction. Finally,
the subsequent response is generated conditioned on both dialogue context and
the predicted triplet. As the example shown in Fig. 1, the MHKT-Path grasps
the latent conversation regularity of human beings, and the generated response
based on the proposed RT-KGD is informative and coherent with the dialogue
context.

The main contributions of this paper are concluded as follows:

– To the best of our knowledge, we are the first to incorporate the relation
transition across multi-turn dialogue into the KGD task. In this manner,
the regularity behind human conversation can be portrayed by integrating
relation transition paths and entity semantic information.

– We propose to build a Multi-turn Heterogeneous Knowledge Transition Path
(MHKT-Path) for each dialogue, which integrates the structure information
of external KG and the sequential information of knowledge with the multi-
turn dialogue. Based on MHKT-Path, our model then retrieves appropriate
knowledge from the KG to guide the next response generation.

– The experimental results on a multi-domain knowledge-driven dialogue
dataset (i.e., KdConv [39]) indicate that our model outperforms strong base-
line models in both automatic and manual evaluation.

2 Related Work

According to whether to introduce knowledge, we categorize previous dialogue
generation works into Vanilla Dialogue Generation and Knowledge-grounded
Dialogue Generation.
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Vanilla Dialogue Generation. Early dialogue systems typically employ
Sequence-to-Sequence (Seq2Seq) models to generate responses [20,21,31], which
is further improved with advanced context encoders [20,31] or more efficient
response generation methods [2,33,37]. Recently, pre-trained generative models
with the backbone of Transformer [25], such as GPT-2 [18] and BART [10],
achieve promising performance in many text generation tasks. There is increas-
ing work focusing on designing Transformer-based pre-trained dialogue mod-
els. Among them, Blender [19] enhances Transformer architecture and show
their superiority in dialogue generation. DialoGPT [35] extends GPT-2 [18] for
response generation. Besides, PLATO [3] pre-trains unified language models for
both bi-directional encoding and uni-directional decoding. Nevertheless, they
can only implicitly learn dialogue strategies and commonsense knowledge from
dialogue corpora, resulting in limited transferability to other dialogue scenes.

Knowledge-Grounded Dialogue Generation. A promising way to gener-
ate meaningful and informative responses is to utilize external knowledge to
guide the models. Generally, the external knowledge comes from textual cor-
pora [9], commonsense knowledge graphs [29,32,38], and domain knowledge
graphs [30,39]. To utilize the knowledge, [6,26] adapt the memory network [23]
to store the relevant knowledge and then generate responses conditioned on both
dialogue context and stored knowledge. Besides, [12,29] employ the posterior
distribution of knowledge to guide its prior distribution, leading to accurate
knowledge selection and high-quality generated responses. Furthermore, some
work [13,14,29] leverages copy mechanism to copy words from knowledge sources
directly and generate more informative responses. Although great progress has
been made, the structural information of KG is neglected, which might lead to
suboptimal responses.

To effectively excavate the structural information, some researchers attempt
to utilize graph neural networks on KG to obtain its structure-aware representa-
tion that is further incorporated into dialogue generation [16,32,38]. AttnIO [8]
leverages bi-direction attention flows to propagate messages from the entities
appearing in the last utterance to their neighbor entities in KG. ConceptFlow [32]
applies a graph attention mechanism to attend to appropriate concepts condi-
tioning on dialogue context for responses generation, where the concepts are
extracted from ConceptNet [22], a large-scale commonsense knowledge graph.
Unlike previous research, our RT-KGD (1) refines the dialogue-level knowledge
transition from different granularity; (2) incorporates the related knowledge
based on the whole dialogue context rather than only the last utterance.

3 Methodology

In this section, we formally define the knowledge-ground dialogue generation
task (Sect. 3.1) and then elaborate on four principal components of our RT-KGD
model. As illustrated in Fig. 2, our model first constructs the multi-turn hetero-
geneous knowledge transition path (MHKT-Path) for the given dialogue context
(Sect. 3.2) and then encodes the MHKT-Path by a knowledge encoder (Sect. 3.3).
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Fig. 2. The architecture of the proposed RT-KGD model.

Next, the predicted triplet from a knowledge prediction (Sect. 3.4) is finally
incorporated into the subsequent response, which is generated by a knowledge-
enhanced encoder-decoder (Sect. 3.5).

3.1 Task Formulation

Given a dialogue context C = {u1, u2, · · · , un−1}, where ui represents
the i-th utterance. Each ui corresponds to a knowledge triplet set Ki =
{(hi1 , ri1 , ti1), (hi2 , ri2 , ti2), · · · , (hi|Ki|

, ri|Ki|
, ti|Ki|

)} (|Ki| ≥ 0), where (h, r, t)
means that head entity h and tail entity t have a relation r, and a descrip-
tive text set Si = {si1 , si2 , · · · , si|Si|

} (|Si| ≥ 0). All knowledge triplets and
descriptive texts are from domain knowledge graph G and corpus O. The goal of
knowledge-grounded dialogue systems is to generate a proper response un based
on the dialogue context C, knowledge graph G, and knowledge corpus O.

3.2 Multi-turn Heterogeneous Knowledge Transition Path

To integrate dialogue-level relation transition regularities with turn-level entity
semantic information, we utilize the knowledge triples associated with the given
dialogue context, i.e., K = K1∪K2∪· · ·∪Kn−1, to construct the multi-turn het-
erogeneous knowledge transition path, which is called MHKT-path. As shown in
Fig. 2, MHKT-path contains two types of vertices, i.e., triplet vertices and relation
vertices. In detail, each triplet vertex represents a knowledge triplet belonging
to K, and corresponds with a relation vertex which is extracted from it. There
are four types of edges in MHKT-Path: (1) the triplet-to-triplet edge links the
triplet vertices associated in one utterance with others in the neighbor utter-
ances; (2) the paired triplet-to-relation and (3) relation-to-triplet edges denote
the bi-directional interaction between triplet vertices and their corresponding
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relation vertices; (4) the relation-to-relation edge links relation vertices with each
other only if their corresponding triplet vertices are connected. In this manner,
the knowledge transition of both turn-level triplets and dialogue-level relations
is integrated into the MHKT-Path.

3.3 Knowledge Encoder

The knowledge encoder learns the representation of the vertices in MHKT-Path.
Specifically, it contains vertex initializer and graph layers to initialize and update
the vertex representations.

Vertex Initializer. Instead of directly using the average word embeddings of
the flat texts in entities and relations, we employ a KG embedding algorithm
(i.e., TransR [15]) to initialize the representation of vertices in our MHKT-Path1:

h0
ei

= TransR(ei) (1)

where ei ∈ K denotes a KG element (e.g., entity or relation), h0
ei

means the
initialized representation of ei. TransR(·) represents the TransR KG embedding
function, learned by projecting entities from entity space to different relation
spaces and building translations between the projected entities. In this way, the
learned representation of KG elements in K contain the global KG structural
information due to their interaction in KG [4,15,34].

For relation vertex in MHKT-Path, we directly use h0
ei

as its initial represen-
tation. For triplet vertex (hi, ri, ti), we calculate its representation as:

TransR(hi) ⊕ TransR(ri) ⊕ TransR(ti) (2)

where ⊕ denotes concatenation.

Graph Layers. Graph layers are used to update the vertex representations with
the local structural information in the established MHKT-Path. Here, we employ
the Heterogeneous Graph Transformer (HGT) [7] as the graph layers since it is
aware of different types of vertices and edges. Given the MHKT-Path, the repre-
sentation of each vertex vi is updated by aggregating its neighbor information:

HGT (h�
vi

) = Aggregate
∀vsrc∈N(vi)

(
Attention(v�−1

i , v�−1
src ) · Message(v�−1

src )
)

(3)

where N(vi) is the neighbor vertices set of vi, the Aggregate(·), Attention(·),
and Message(·) are three basic operators in HGT:

– Attention(·) calculates the mutual attention of each vertex pair, where each
type of vertex and edge has a unique linear projection.

1 We also attempt to encode entities and relations based on word embedding, as
suggested by [27,28], the results underperform that of using TransR.
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– Message(·) transfers information from different types of neighbor vertices of
each vertex vi.

– Aggregate(·) integrates messages from neighbor vertices with attention
weights to the core vertex vi.

Finally, for vertex vi, we concatenate the final node representation and the
corresponding initial node representation with a simple linear projection:

hHGT
vi

= W ([h0
vi

⊕ hL
vi

]) (4)

where W is trainable parameters, L is the number of layers of HGT.

3.4 Knowledge Predictor

After obtaining the final representations of both triplet and relation vertices
in MHKT-Path, the knowledge predictor is used to predict the knowledge which
might be implied in the response. There are three parts to knowledge predic-
tion, i.e., relation prediction, relation-aware triplet prediction, and multi-label
triplet classification. Since the knowledge encoder aggregates only local neigh-
borhood information, we further employ the bi-directional gated recurrent unit
(Bi-GRU) [5] to enrich the sequential representations of relations and triplets.

In detail, we first treat the average vertices representation in dialogue order
as the input of Bi-GRU. Suppose there are m relation vertices and m triplet
vertices in turn i. The relation vertices in turn i are denoted as {ri,j}m

j=1, whose
average representation is shown as follows:

R0
i = Mean(hHGT

ri,1
, · · · , hHGT

ri,m
) (5)

Similarly, the triplet vertices in turn i are denoted as {ti,j}m
j=1 ⊂ K, whose

average representation is:

T 0
i = Mean(hHGT

ti,1 , · · · , hHGT
ti,m ) (6)

Relation Prediction. The relation prediction part is to obtain the n-th relation
hidden state hGRU

r (n) based on the previous n−1 turns relation representation.
At step t of relation prediction, Bi-GRU generates the t-th relation hidden state
as follows:

hGRU
r (t) = [hfw

r (t);hbw
r (t)]

= [
→

GRU(R0
t , h

fw
r (t − 1));

←
GRU(R0

t , h
bw
r (t − 1))]

(7)

Relation Transition Aware Triplet Prediction. Different from the relation,
we utilize Bi-GRU to obtain n−1 triplet hidden states hGRU

t (1), · · · , hGRU
t (n−1)

based on the input T 0 = T 0
1 , · · · , T 0

n−1. For the i-th triplet, its hidden state is
calculated as follows:

hGRU
t (i) = [hfw

t (i);hbw
t (i)]

= [
→

GRU(T 0
i , hfw

T (i − 1));
←

GRU(T 0
i , hbw

t (i − 1))]
(8)
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After obtaining the predicted n-th relation hidden state and n − 1 triplet
hidden states, we employ multi-head attention [25] to jointly attend to the infor-
mation from both dialogue level and turn level. Thus the predicted triplet rep-
resentation hATT

tn is calculated as follows:

αi = softmaxi

(
hGRU

rn

T
hGRU

ti

)

hATT
tn =

D

‖
d=1

n−1∑
i=1

αd
i h

GRU
ti

(9)

where D denotes the number of attention heads.

Multi-label Triplet Classification. Since there might be multiple knowledge
in the next response, the multi-label classification is adapted to map the pre-
dicted triplet representation to a label vector, where the number of labels is the
total number of triplets in the knowledge graph G.

Formally, let label l = Wl(hATT
tn ) ∈ R|K|, where Wl is a trainable parameter

and |K| is the total triplet size. The target label is denoted as y ∈ {0, 1}|K|. Then
we adapt the binary cross-entropy (BCE) loss to supervise the classification of
triplets:

LBCE = − 1
K

K∑
i=1

[
yilog(σ(li)) + (1 − yi)log(1 − σ(li))

]
(10)

where σ(·) is sigmoid function.

3.5 Knowledge-Enhanced Encoder-Decoder

We employ pre-trained BART [10] as the backbone of our KGD model, which
aims to generate the final response based on dialogue context C, predicted triplet
representation K and corresponding descriptive texts S. The input dialogue
context is formed as “[CLS]u1[SEP]u2[SEP]· · · [SEP]un−1[SEP]”, where [CLS]
and [SEP] are two special tokens to indicate the utterance boundaries. Then, the
input is automatically tokenized by the BART’s tokenizer, followed by a stack
of BART encoder layers. Next, the context-aware representation of each token
is obtained from the output of the last encoder layer of BART:

hC
1 , · · · , hC

|Cinp| = BARTenc(C) (11)

where |Cinp| indicates the number of tokens in the input sequence, BARTenc(·)
denotes the BART encoder, and hC

i is the context-aware representation of the
i-th token in the sequence.

Similarly, for the descriptive text set S = {S1, S2, · · · , Sn−1} corresponding
to the context C, each Si is encoded by the BART encoder, where the input is
formed as “[CLS]Si1[SEP]Si2[SEP]· · · [SEP]Si|Si|

”. We take the context-aware
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final representation of [CLS] as the sentence representation, and the encoded
sentence embedding of the i-th turn is obtained as follows:

hS
i = BARTenc(Si) (12)

Finally, the response is generated by the BART decoder, conditioning
on the BART-encoded dialogue context hC

1 , · · · , hC
|Cinp|, descriptive sentences

hS
1 , hS

2 , · · · , hS
|n−1| and predicted triplets hATT

tn :

G = BARTdec([hC
1 ;hC

2 · · · ;hC
|Cinp|;h

S
1 ;hS

2 ; · · · ;hS
|n−1|;h

ATT
tn ; ]) (13)

where G is the representation of generated response, BARTdec(·) denotes the
BART decoder, ; denotes the token boundaries.

Cross Entropy Loss. We guide the decoder with the ground-truth response
Y = un by computing the Cross-Entropy Loss:

LCE = − 1
|Y |

|Y |∑
t=1

log(P (Gt = Yt)) (14)

where Gt denotes the generated token at the decoding time step t, while Yt is
the t-th token of the ground-truth response. In summary, the final loss is defined
by:

Ltotal = LCE +λ · LBCE (15)

where λ denotes the coefficients of the BCE loss.

4 Experiments

4.1 Dataset

To verify our model, two requirements should be met in the datasets: (1) each
utterance is annotated with related knowledge triples, and (2) containing abun-
dant utterances in each dialogue. Therefore, we conduct our experiments on
KdConv [39], a Chinese multi-domain knowledge-driven dialogue dataset, which
contains 4.5K dialogues together with 86K utterances from three domains (i.e.,
film, music, and travel). In KdConv, each dialogue contains 19.0 turns as well as
10.1 triplets on average. For domain-specific knowledge, both structured triplets
and unstructured texts are provided. Specifically, the film, music, and travel
domain knowledge contain 89K, 56K, and 10K triplets, together with 7.3K, 4.1K,
and 1.1K descriptive sentences, respectively.
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4.2 Settings

Baselines: We adopt both vanilla and knowledge-grounded (indicating by
“+know”) dialogue generation models as our baselines:

– Seq2Seq [24]: An encoder-decoder model augmented with attention mecha-
nism [1].

– Seq2Seq+know [39] fuses the last hidden state of the encoder with the
knowledge vector via the attention mechanism and feeds both of them into
the Seq2Seq decoder.

– HRED [20]: A hierarchical recurrent encoder-decoder model which models
utterances and context separately with different RNNs.

– HRED+know [39] fuses the context vector with the knowledge vector and
treats the fused vector as the initial state of the HRED decoder.

– BART [10]: A pre-trained Transformer-based encoder-decoder model which
achieves state-of-the-art performance on various text generation tasks.

– BART+know incorporates both knowledge entities and relations repre-
sented by the average word embeddings of the corresponding flat texts.

– BART+know(TransR) incorporates knowledge entities and relations rep-
resented by a knowledge graph embedding algorithm (i.e., TransR [15]).

Implementation: We implement the above models with PyTorch and Hugging-
face Transformers2 libraries. In Seq2Seq and HRED baselines, we employ GRU
architecture [5] as the encoder and the decoder with 200 hidden cells. In terms of
word embeddings, we adapt Tencent AI Lab word embeddings of 200d3. When
encoding context, all models treat the concatenation of the past n−1 utterances
as the input of the encoder, while the target output of the decoder is the n-th
utterance. n is set to 8 in our experiments suggested by KdConv [39]. All models
are optimized with ADAM optimizer using an initial learning rate of 5e-5. The
mini-batch size is set to 32.

For our RT-KGD, the embedding size of entities and relations is set to 200. The
implementation of TransR is provided by OpenKE 4. The knowledge encoder is
Bi-GRU, the hidden size and the number of layers are set to 300 and 1, respec-
tively. We choose the Chinese BART 5 as the baseline pre-training language
model with the default hyper-parameter settings. When decoding the response,
the beam search size of all models is set to 5. The λ is set to 1 in Eq. 15.

4.3 Evaluation Metrics

Automatic Evaluation: Following [39], we adopt perplexity (PPL), BLEU
scores [17], and Distinct scores [11] as automatic metrics. In detail, PPL is used

2 https://github.com/huggingface/transformers.
3 https://ai.tencent.com/ailab/nlp/en/embedding.html.
4 https://github.com/thunlp/OpenKE.
5 https://huggingface.co/fnlp/bart-base-chinese.

https://github.com/huggingface/transformers
https://ai.tencent.com/ailab/nlp/en/embedding.html
https://github.com/thunlp/OpenKE
https://huggingface.co/fnlp/bart-base-chinese
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Table 1. Automatic evaluation results on KdConv Corpus. The bold indicates the
best performance. The “+know” means the models are enhanced by the knowledge
base, and the knowledge words are encoded by word embeddings. ↑ indicates higher is
better. ↓ indicates lower is better. † denotes the results reported by KdConv [39].

Model PPL ↓ BLEU-1/2/3/4 ↑ Distinct-1/2/3/4 ↑
Film

Seq2Seq 23.88† 26.97† 14.31† 8.53† 5.30† 2.32† 6.13† 10.88† 16.14†

Seq2Seq+know 25.56† 27.45† 14.51† 8.66† 5.32† 2.85† 7.98† 15.09† 23.17†

HRED 24.74† 27.03† 14.07† 8.30† 5.07† 2.55† 7.35† 14.12† 21.86†

HRED+know 26.27† 27.94† 14.69† 8.73† 5.40† 2.86† 8.08† 15.81† 24.93†

BART 2.66 28.54 19.28 14.21 11.00 2.46 14.12 25.72 36.12

BART+know 2.85 29.38 20.18 15.02 11.74 2.55 15.26 28.01 39.45

BART+know(TransR) 2.82 29.68 20.43 15.26 11.97 2.50 15.12 27.96 39.56

RT-KGD(ours) 2.86 32.11 22.21 16.68 13.18 3.05 16.34 31.36 44.68

Music

Seq2Seq 16.17† 28.89† 16.56† 10.63† 7.13† 2.52† 7.02† 12.69† 18.78†

Seq2Seq+know 17.12† 29.6† 17.26† 11.36† 7.84† 3.93† 12.35† 23.01† 34.23†

HRED 16.82† 29.92† 17.31† 11.17† 7.52† 2.71† 7.71† 14.07† 20.97†

HRED+know 17.69† 29.73† 17.51† 11.59† 8.04† 3.80† 11.70† 22.00† 33.37†

BART 2.46 31.65 23.04 18.22 15.05 2.80 13.69 24.73 34.59

BART+know 2.40 32.20 23.24 18.20 14.89 2.74 13.54 24.96 35.41

BART+know(TransR) 2.44 32.27 23.40 18.44 15.22 2.80 13.68 25.19 35.61

RT-KGD(ours) 2.47 40.75 31.26 25.56 21.64 4.18 17.38 30.05 41.05

Travel

Seq2Seq 10.44† 29.61† 20.04† 14.91† 11.74† 3.75† 11.15† 19.01† 27.16†

Seq2Seq+know 10.62† 37.04† 27.28† 22.16† 18.94† 4.25† 13.64† 24.18† 34.08†

HRED 10.90† 30.92† 20.97† 15.61† 12.30† 4.15† 12.01† 20.52† 28.74†

HRED+know 11.15† 36.87† 26.68† 21.31† 17.96† 3.98† 13.31† 24.06† 34.35†

BART 1.83 34.77 29.11 25.69 23.33 2.70 13.39 21.92 29.53

BART+know 1.67 36.19 29.83 26.04 23.41 2.59 13.31 22.01 29.69

BART+know(TransR) 1.69 36.61 30.29 26.54 23.92 2.56 13.58 22.85 30.87

RT-KGD(ours) 1.61 47.56 41.46 37.40 34.31 3.58 15.50 26.10 35.72

to evaluate whether the generation result is grammatical and fluent. BLEU-
n (n=1, 2, 3, or 4) estimates how many n-grams overlap between generated
sentences and ground truth references. Distinct-n (n=1, 2, 3, or 4) evaluates the
diversity of generated responses.

Human Evaluation: Considering the complexity of the knowledge-grounded
dialogue generation task and the limitation of automatic evaluation, it is nec-
essary to further conduct the human evaluation. Following KdConv [39], The
criteria of human evaluation include two aspects: (1) Fluency evaluates whether
the generated responses are reasonable and relevant to the given dialogue
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context. (2) Coherence measures how relevant the knowledge contained in the
generated responses and the counterpart in the ground truth responses. We ran-
domly select 100 dialogue contexts from KdConv in three domains, respectively,
and then ask five well-educated evaluators to judge the generated responses by
different models. The scoring adopts a 3-point scale.

(a) Fluency scores on film, music and travel domains, respectively

(b) Coherence scores on film, music and travel domains, respectively

Fig. 3. Human evaluation in three domains, including means and variances of the
Fluency (a) and Coherence (b). κ is the Fleiss’ kappa value.

4.4 Experimental Results

Table 1 shows the automatic evaluation results. We analyze the results from the
following perspectives:

(1) Comparison between models: Compared with all baseline models,
RT-KGD achieves the best results on most of automatic metrics in three domains,
which indicates that our knowledge-guided method is extremely effective in
improving the coherence and diversity of generated responses. Specifically, com-
pared with Seq2Seq-based and HRED-based models, our RT-KGD obtains not only
lower PPL scores but also higher BLEU-n and Distinct-n scores in three domains.
This is because we utilize the pre-trained language model to encode contexts and
generate responses, which makes use of the implicitly learned knowledge from
the pre-trained corpus. On the other hand, compared with BART-based mod-
els, our RT-KGD works better in terms of BLEU-n and Distinct-n scores, however
worse on PPL scores. Based on our manual sampling analysis of the experimental
results, the reason might be that our MHKT-Path takes the knowledge transition
into consideration. At the same time, diverse knowledge information may result
in responses that have never appeared in the corpus, thus reducing the PPL
scores.
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Moreover, it can be seen that all models with knowledge perform better
than those without knowledge in terms of BLEU-n and Distinct-n, indicating
the benefits of incorporating knowledge. However, the addition of knowledge
works worse in PPL. The reason may be that the sentence with knowledge is
less common and more difficult to understand for the model. We also observe
that all models with “know(TransR)” obtain higher BLEU-n and Distinct-n
scores than models with “know”, demonstrating that introducing of knowledge
graph embedding algorithm has a positive influence on generating high-quality
responses. It is worth noting that in the music domain, BART performs better
than BART+know in terms of Distinct-1 and Distinct-2 but worse in Distinct-3
and Distinct-4, which is due to that BART prefers to use individual words with
low frequency rather than common phrases. Furthermore, it is possible to get
a high Distinct-1 for putting together a response with entirely random words.
The same analysis comparing BART and BART+know also applies to the travel
domain.

(2) Comparison between domains: As we can see, models in the travel
domain perform better than that in film and music domains on PPL and BLEU-
k, while models in the film domain obtain higher Distinct-n scores than the same
model in music and travel domains. The reason might be that there are more
entities and relations in the film domain, which leads to more diverse knowledge
tokens but a lower similarity with the ground-truth.

4.5 Human Study

Here, we estimate three knowledge-grounded dialogue generation models which
perform better than other baselines. The experiment results are shown in Fig. 3.
As can be seen, RT-KGD outperforms other models significantly on both metrics in
all three domains, which indicates that our model can generate more human-like
responses. Moreover, the performance gap between models behaves differently
on different metrics. The fluency scores in the music domain (the middle one in
Fig. 3(a)) are increased from 1.36 (HRED+know) to 1.93 (RT-KGD), while the
coherence scores in the music domain (the middle one in Fig. 3(b)) are increased
from 1.00 (HRED+know) to 1.77 (RT-KGD). We also show Fleiss’ Kappa values of
our human study. A higher score indicates higher agreements among evaluators.
The kappa scores demonstrate a good inter-agreement among our evaluators.

4.6 Ablation Study

To analyze which components are driving the improvements, we further design
three graph variants for detailed comparison and ablation study: (1) “w/o tri”
removes the triplet vertices in MHKT-Path; (2) “w/o rel” removes the relation
vertices in MHKT-Path; (3) “w/o edge” removes the edges between the triplet
and the relation vertices in MHKT-Path.

Table 2 shows the results of ablation studies. First, we observed that models
suffer the performance drop when removing any of the components, demon-
strating the effectiveness of integrating triplets and relations. Second, the degree
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Table 2. Ablation study on KdConv. The bold and underline denote the best and the
worst performances, respectively.

Model PPL ↓ BLEU-1/2/3/4 ↑ Distinct-1/2/3/4 ↑
Film

RT-KGD(ours) 2.86 32.11 22.21 16.68 13.18 3.05 16.34 31.36 44.68

- w/o tri 2.85 30.17 20.82 15.58 12.22 2.61 15.79 29.28 41.16

- w/o rel 3.37 30.10 20.64 15.42 12.10 2.56 15.76 29.31 41.44

- w/o edge 3.35 30.13 20.76 15.52 12.22 2.53 15.79 29.42 41.68

Music

RT-KGD(ours) 2.47 40.75 31.26 25.56 21.64 4.18 17.38 30.05 41.05

- w/o tri 2.43 32.22 23.24 18.22 14.94 2.74 13.17 24.26 34.42

- w/o rel 2.49 32.53 23.66 18.67 15.44 2.85 14.12 26.28 37.22

- w/o edge 2.42 32.28 23.44 18.50 15.26 2.83 13.92 25.36 35.55

Travel

RT-KGD(ours) 1.61 47.56 41.46 37.40 34.31 3.58 15.50 26.10 35.72

- w/o tri 1.70 36.92 30.69 26.95 24.33 2.71 13.89 23.32 31.76

- w/o rel 1.84 36.98 30.59 26.74 24.06 2.64 13.63 23.01 31.17

- w/o edge 1.82 37.39 31.02 27.21 24.55 2.58 13.43 22.14 29.79

of impact increases from the film domain to the travel domain after removing
components. For example, the BLEU-n scores decrease by 1.4, 7.4, and 10.4 on
average in film, music, and travel, respectively, which shows that our MHKT-Path
plays a more significant role in the travel domain in improving the quality of
generated response. Third, the contribution of each component is not equal in
different domains. Specifically, if the triplet vertices are removed, BLEU-n and
Distinct-n scores are dramatically dropped in the music domain, indicating that
turn-level entity information is capable of enhancing knowledge comprehension.
While removing the relation vertices, BLEU-n scores declined most significantly
in film and travel domains, demonstrating the advantage of explicitly modeling
dialogue-level relation transition regularities. Lastly, without the edges between
the triplet and relation vertices, the performance of RT-KGD in all three domains
is reduced to varying degrees. This is because the edge between triplet vertices
and relation vertices effectively propagates the information between these two
vertices.

4.7 Case Study

As shown in Fig. 4, we show the responses generated by HRED+know,
BART+know(TransR) and RT-KGD. We can observe that given the context
and corresponding knowledge triplets, HRED+know tends to generate generic
or irrelevant responses, and BART+know(TransR) can generate coherent and
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Dialogue (Film) Knowledge
Head Relation Tail

Context

User1: Have you heard of Andy Lau?

Andy Lau

Occupation

Actor

User2: Of course, he is an actor, singer, lyricist and producer.
Singer
Lyricist

Producer

User1: Is he still a famous actor? Are there any representative 
works?

Representative 
Work

A World Without 
Thieves

User2: Film and television works have A World Without Thieves, 
Infernal Affairs, A Simple Life and so on. Have you seen them?

Infernal Affairs

A Simple Life

User1: Oh, I've seen A Simple Life. Do you remember who 
starred in the film?

A Simple Life Cast

Ye Dexian

Response

Ground-Truth: Starring Ye Dexian, Andy Lau, Wang Fuli, Qin 
Hailu, Huang Qiusheng, etc. Andy Lau

HRED+know: Yes, there's Leonardo DiCaprio . Do you 
remember who starred? Wang Fuli

BART+know(TransR): Of course, Bradley Cooper , Christopher 
waltz , Melissa George  and so on. They all played very well! Qin Hailu

RT-KGD(Ours): Of course, there are Ye Dexian, Andy Lau, 
Wang Fuli, Qin Hailu, Huang Qiusheng and other co stars. Have 
you heard of them?

Huang Qiusheng

Fig. 4. Example dialogue cases. The bold is the core entity under discussion. Underline
is the appropriate knowledge used in the dialogue. Italic is inconsistent with the con-
text.

informative responses but utilizes the inconsistent knowledge. While our RT-KGD
is superior to generating high-quality responses with appropriate knowledge.

5 Conclusion

In this paper, we proposed a novel KGD model: Relation Transition aware
Knowledge-Grounded Dialogue Generation (RT-KGD), which models the knowl-
edge transition across multi-turn dialogue by integrating dialogue-level relation
transition regularities with turn-level entity semantic information. Furthermore,
our RT-KGD model utilizes the predicted knowledge to generate a response given
the dialogue context. According to automatic and manual evaluation, our model
generates high-quality responses which utilize more appropriate knowledge and
are closer to the responses given by humans.

Supplemental Material Statement: The KdConv dataset and part of the baselines
in Sect. 4 are publicly available from Github6. Source codes for RT-KGD model
are available at https://github.com/tigerwww-git/RT-KGD.
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