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Abstract. This paper introduces an end-to-end learning framework
called LoGNet (Local and Global Triple Embedding Network) for triple-
centric tasks in knowledge graphs (KGs). LoGNet is based on graph neu-
ral networks (GNNs) and combines local and global triple embedding
information. Local triple embeddings are learned by treating triples as
sequences. Global triple embeddings are learned by operating on the fea-
ture triple line graph GL of a knowledge graph G. The nodes of GL are
the triples of G, edges are inserted according to subjects/objects shared
by triples, and node and edge features are derived from the triples of
G. LoGNet brings a refreshing triple-centric perspective in learning from
KGs and is flexible enough to adapt to various downstream tasks. We
discuss concrete use-cases in triple classification and anomalous predicate
detection. An experimental evaluation shows that LoGNet brings better
performance than the state-of-the-art.
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1 Introduction

Knowledge Graphs (KGs) are organized as a set of facts (or triples) of the form
(s, p, o) where the predicate p represents a semantic relation holding between
the subject entity s and the object entity o. As an example, the triple (M.
Freeman, starring, Invictus) represents the fact that the actor M. Freeman was
starring in the movie Invictus. Several approaches have focused on learning
representations (aka embeddings), for both entities and predicates, in the form of
low-dimensional vectors [5] to support knowledge discovery tasks. The problem
of directly computing embeddings of entire triples has received little attention.

Related Work. We identify three main strands of related research. The first
concerns node embeddings (e.g., RDF2Vec [27], metapath2vec [12], JUST [17],
NESP [7]) and is based on first computing walks in KGs according to different
strategies and feed them into language model techniques (e.g., Word2Vec [22]).
Node embeddings can then be used in various downstream applications, includ-
ing node classification and clustering (e.g., [7,17]). The second strand has focused
on finding both entity (node) and predicate (edge) embeddings with the main
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goal to perform link prediction or knowledge graph completion (e.g., TransE [4],
ComplexE [31], ConvE [11], RotatE [30]). The third strand leverages Graph
neural networks (GNNs) [28] as a model that directly adapts to graphs in a
variety of classification and prediction tasks (e.g., node-level, graph-level) and
contexts, from drug discovery to neural translation. GNNs can be used to com-
pute node, edge, and graph embeddings. We observe that the problem of directly
computing embeddings of entire triples has received little attention. One indirect
way to solve this problem would be to perform some operation (e.g., Hadamard
product, concatenation, average) on the embeddings of the subject, object, and
predicate in the triple. However, this approach is sub-optimal and fails to cap-
ture the essence of triple embeddings for two main reasons. First, it treats sub-
ject, predicate, and object (embeddings) as separate elements, disregarding that
triples are inherently sequential. The second reason is that approaches based
on entity/predicate embeddings aggregation fail to capture correlations among
entire triples. Triple2Vec [13] is the only approach we are aware of that directly
computes triple embeddings; it leverages the triple line graph GL of a knowledge
graph G where the nodes of GL are the triples of G with edges between nodes
inserted whenever the triples of G share an endpoint. Then, it uses walks com-
puted on the triple line graph fed to word2vec to compute the embeddings of
the nodes of GL that correspond to the triples of G.

Limitations of the State-of-the-Art. We identify some potential drawbacks
for Triple2Vec: (i) Triple2Vec neither considers node nor edge features that may
be derived in a KG, for instance, by looking at the semantics of predicates or node
types. Besides, turning triples to nodes via the line graph transformation only
considers topological information disregarding semantic relationships between
triples; (ii) Triple2Vec is not trained in an end-to-end fashion; embeddings learned
by Triple2Vec need to be fed to other learners (e.g., one-vs-rest logistic regressors)
for downstream tasks. This approach requires to train additional modules on an
objective unrelated to the initial task. The goal of this paper is to present an
end-to-end learning framework to compute triple embeddings.

Challenges and Contributions. To accomplish the goal mentioned above, we
address three main challenges. The first concerns how to capture triple embedding
information. To solve this challenge, we note that triples in the input knowledge
graph G have an inherently sequential nature and can be seen as three-word
sentences; each triple is a sequence of subject→predicate→object (in the for-
ward order) and object→predicate→subject (in the reverse order). We propose
to learn local triple embeddings by using bidirectional recurrent neural net-
works [9], a class of neural networks specific for sequence learning. The second
challenge concerns node and edge features. We have discussed that the state-of-
the-art Triple2Vec neither considers node nor edge features. To initialize features
one can consider, for instance, node degrees [15], random values [1] or position-
based techniques [37]. Despite various approaches, it is unclear which kind of
artificial feature initialization works best. To solve this challenge, we leverage
semantic information carried by the triples of G to initialize both node and edge
features of the GL. Specifically, the node features of GL will be the local triple
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embeddings obtained from G. The edge features are obtained by looking at the
relatedness between the triples corresponding to adjacent nodes of GL. As an
example, suppose that in the edge (ni, nj) of GL node ni and nj correspond to
the triples skpioj and skpkow in G, respectively. We can consider a 3-dimensional
feature vector where the first dimension represents the relatedness between the
predicates [29] pi and pk while the second and third dimensions are the related-
ness of the subject and object entity node types, respectively. The third challenge
concerns how to combine local, global, and neighbor triple embedding informa-
tion. To solve this challenge, we introduce the Local and Global Triple Embed-
ding Network (LoGNet), a novel learning framework based on GNNs. LoGNet’s
underlying idea is to intertwine information from G (local triple embeddings)
and GL (global triple embeddings). In LoGNet message passing and aggregation
relies on both node and edge features of the GL; LoGNet adopts a multi-channel
convolution operator that weights the contributions of neighbor nodes to the
representation of a target node. LoGNet is flexible enough for a variety of triple-
centric downstream applications by providing an appropriate loss function and
output layer.

Impact and Applications. Investigating triple-centric applications brings a
refreshing perspective to a landscape dominated by node/edge-centric appli-
cations. Triple embeddings are good support for any path-based downstream
application; here, the intuition is to embed paths as sequences of triple embed-
dings and then aggregate them. Examples are fact-checking [26] or user-item
recommendation [13]. Triple embeddings are useful in sensitive data release sce-
narios where the same predicate may not be sensitive depending on the subject
and object. Consider the triples (Joe, marriedTo, Val) and (Frank, marriedTo,
Mary) extracted from a government document. It may be the case that the
same predicate marriedTo may be considered sensitive for Val and not for Mary.
Therefore, using the same predicate embedding in a data analysis scenario may
be insufficient. In this paper, we will focus on the predicate anomaly problem
where both the subject and the object of a triple are legitimate entities, and the
potential anomaly resides in the predicate linking them [18]. Predicate anomaly
is a fundamental problem as KGs are traditionally incomplete [10] and can have
a considerable amount of incorrect triples [20]. We will show how LoGNet can be
customized to tackle this task by adopting a margin-based loss function and an
output layer, which returns a plausibility score for each triple.

Outline. We provide some preliminary definitions in Sect. 2. We outline in
Sect. 3 LoGNet, which is a generic learning framework for triple-centric tasks
in KGs. Section 4 shows how LoGNet can be adapted to solve the problem of
anomalous predicate detection from the novel perspective of triple embeddings.
In Sect. 5, we discuss an experimental evaluation. We conclude in Sect. 6.

2 Definitions and Background

A Knowledge Graph (G) is a labeled directed multigraph (VG, EG, TG) where
VG is a set of uniquely identified nodes representing entities (e.g., D. Lynch),
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EG a set of predicates (e.g., director) and TG a set of triples of the form (s,
p, o) representing directed labeled edges, where s, o ∈ VG and p ∈ EG. Often,
information in a G is organized according to an underlying schema defining,
for instance, the types of the entity nodes (e.g., Person) and domain and range
definitions for predicates stating what type of entity one should expect ad subject
and object of a triple. We denote by type(e) the set of types of an entity e.

Entity and Predicate Embeddings. KG embedding approaches focus on
learning vector representations e ∈ R

de for each entity e ∈ VG and possibly
predicate embeddings p ∈ R

dp for each predicate p ∈ EG . Typically, KG embed-
ding systems include an embedding component and a scoring component. The
former maps each entity to its corresponding embedding while the latter learns
a scoring function f : VG × EG × VG → R where f(s, p, o)defines the score of
the triple (s, p, o). Embeddings are obtained by defining a loss function (e.g.,
Logistic Loss) and solving an optimization problem where the score of a positive
triple (s, p, o) is to be higher than that of a (corrupted) negative triple. As an
example, in the popular TransE model [4], where predicates are modeled as vec-
tor translations, the scoring function is sp = d(s + p, o) where d is the euclidean
distance. Other approaches capture more refined relations (see [5] for a survey).

Graph Neural Networks. We now introduce graph neural networks in a gen-
eral form. To keep the presentation concise, we focus on undirected and unla-
beled graph. Let (VG, EG) be a graph with N=|VG| nodes vi ∈ VG, and edges
(ei, ej) ∈ EG. Given a node u the set of neighbours is denoted by N (u). We
denote by A the adjacency matrix where A ∈ R

N×N . Moreover, the matrix
H(0) ∈ R

N×D0
is the initial node feature matrix and h

(0)
i denotes the D(0)-

dimensional feature vector of node vi. A GNN can be represented as:

h
(l+1)
i = σ

( N∑

j=1

α(vi, vj) · h
(l)
j · W (l)

)
, l = 0, . . . , L − 1 (1)

where h
(l)
i is the embedding of node vi at layer l. Moreover, α=(vi, vj) ∈ R

N×N

is a weight matrix, W (l) ∈ R
D(l) × D(l+1) is the transformation matrix at

layer l, and σ is the activation function. The weight α(vi, vj) (abbreviated
as αi,j) is non-zero if the node vj is a direct neighbor of node vi, that is,
vi ∈ N (i). Different ways have been proposed when it comes to the weight
matrix α. As an example, Kipf and Welling [19] define fixed weights as α = D̃−1

or α = D̃−1ÃD−1, respectively, where Ã =A + I, and D̃ is the diagonal degree
matrix of A. More sophisticated approaches, instead of assigning fixed weight,
try to learn them via attention coefficients [32]. GATs [32] learn weights via
attentive functions of the form αi,j = α̃i,j(θ)∑

vk∈N(i) α̃i,j(θ)
; here, unnormalized atten-

tions α̃i,j(θ)(exp(ReLU(αT [Whi||Whj ])), are parametrized by θ = {α} with ||
denoting concatenation. For attention networks, the weights that are learned
αi,j ≈ α̃i,j can be evaluated only given the unnormalized neighborhood weights.
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3 The LoGNet Framework

We now describe the design of a learning framework called LoGNet to directly
compute triple embeddings from a knowledge graph combining local and global
triple embedding information. The intuition is that local triple embeddings can
be complemented with global embeddings derived by scrutinizing the feature
triple line graph structure. This structural information is independent of node
features and can be derived solely based on the links between nodes of the
feature triple line graph. Finally, integrating local embeddings with connectivity
information is crucial to fully capture the essence of each node (triple) and thus of
its embedding [3]. LoGNet computes local embeddings obtained from the triples
of an input G. However, local embeddings do not consider triples from a global
perspective; notably, they do not consider dependencies among entire triples.
We introduce an alternative view of triple information and discuss a GNN-based
triple embedding module to cope with this issue.

3.1 Local Triple Embeddings

Triple Embedding via Aggregation. One simple way to compute triple embed-
dings is by aggregating the embeddings of the entities and predicate within.
Given a triple t= (s, p, o) ∈ G, the idea is to define a mapping function EmbL:
Agg(Emb(s), Emb(p), Emb(o)):�→ R

d, where Emb(·) is an embedding function
that maps entities or predicates into a D-dimensional vector. Emb(·) can be
instantiated with a variety of techniques such as TransE [4], RotatE [30], and
DistMul [36] that return embeddings for s, p, and o separately. As an example,
TransE to learn entity and predicate embeddings utilizes the triple implausi-
bility score s + p ≈ o while DistMul considers 〈p, s,o〉 where 〈·〉 denotes the
generalized dot product with s, p, o ∈ Rk. Hence, triple embeddings can be
obtained via an aggregation function Agg(·). Examples of aggregation include
the average, maxpool, and Hadamard product.

Triple Embedding as Sequence Encoding. The approach based on aggregation
suffers from some drawbacks. First, the usage of aggregation functions (e.g.,
mean, max) does not properly discern the contribution of each component of a
triple to the final triple embedding. Second, as the approaches implementing the
Emb(·) return an embedding for each entity and predicate in G, triples sharing
the same entity or predicate will share part of the final embedding, which does
not allow to obtain a fine-grained triple embedding representation. Third, the
approach based on aggregation mostly ignores the sequential nature of a triple,
which has a relevant role in directed graphs as KGs. Therefore, we consider
a second approach to obtain local triple representations, which treats a triple
as a directed and ordered sequence s →p → o composed of three steps (i.e.,
s, p, o). To deal with this sequence of elements, we employ Recurrent Neural
Networks and, in particular, Bidirectional Gated Recurrent Unit (BiGRU) [8].
This architecture offers performance comparable to the LSTM model [16] with
the advantage of being more computationally efficient [9].
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To fulfill our ultimate goal of learning triple embeddings, we need to con-
sider the context of a triple in terms of neighbor triples. Missing contextual
information will fail to capture potential correlation and dependencies among
entire triples. Therefore, we introduce a global triple embedding computation
mechanism in the next section.

3.2 Global Triple Embeddings

Correlation and dependencies among entire triples can be captured by looking
at triples from a global perspective, where triples become first-class citizens.

Feature Line Graph. The notion of the line graph of a graph is well-known in
graph theory [34]. Given an undirected graph G = (VG, EG), the corresponding
line graph GL is such that: (i) each node of GL represents an edge of G; (ii) two
vertices of GL are adjacent if, and only if, their corresponding edges in G have
a node in common. This notion has been extended to multigraphs and directed
graphs. The multigraph extension adds a different node in the line graph for each
edge of the original multigraph. If the graph G is directed, the corresponding line
graph GL will also be directed; its vertices are in one-to-one correspondence to the
edges of G and its edges represent two-length directed paths in G. Triple2Vec [13]
used the triple line graph of a knowledge graph. However, we note that such
a triple line graph is unlabeled, and neither nodes nor edges are endowed with
features, thus making difficult the usage of deep learning techniques at their full
potential. For example, in the absence of node features, GNNs fail to differentiate
between similar graph sub-structures within graphs [35]. A workaround would
be to consider one-hot encoding instead of features. However, this will hinder
using the model on new nodes. Other approaches could include the usage of
random values [1] or positional features [37]. However, there is no transparent
approach that works best in all scenarios. We overcome the lack of features in
GL by leveraging information from the triples of the original graph G:

1. As nodes of GL correspond to triple of G, we can consider local triple embed-
dings (see Sect. 3.1) as the initial features of the nodes of GL.

2. An edge (ni, nj) of GL links the two corresponding triples ti and tj in G. How-
ever, each of such triple implicitly includes semantic information deriving, for
instance, from the subject and object entity types or the type of predicate
linking subject and object. As an example, the triples (M. Freeman, starring,
Invictus) and (M. Damon, starring, Invictus) taken from the DBpedia knowl-
edge graph tell us that type(M. Freeman) = {Person}, type(Invictus) = {Film}
and that domain(starring) =Actor and range(starring) =Work. Our proposal is
to introduce, for each edge vi,j ∈ EL a P -dimensional feature vector vi,j ∈ R

P

where each dimension captures a different relatedness perspective between the
elements of the triples ti (corresponding to node ni ∈ VL) and tj (correspond-
ing to the node nj ∈ VL).

Therefore, we introduce a triple line graph with node and edge features that
we refer to as feature triple line graph.



342 G. Pirrò

Definition 1. (Feature Triple Line Graph). Given G = (VG, EG, TG) with
N= |TG| triples, the associated features triple line graph GL is a graph
(VL, EL,XV ,XE), where ti ∈ TG �→ ni ∈ VL and |VL|=N . There exists an edge
(i, j) ∈ EL between ni ←� ti =(s1, p1, o1)∈ TG and nj ←� tj =(s2, p2, o2) ∈ TG if
{s1, o1} ∩ {s2, o2} 
= ∅. Node features are represented by a matrix XV =N × F ,
where XV (i, j) gives the j-th entry of the F -dimensional feature vector of the
i-th node in the feature triple line graph. Edge features are represented via a
XE = N × N × P tensor; XE(i, j, p) is the p-th channel of the P -dimensional
vector of the edge (i, j).

Semantic Relatedness
(starring, stateOfOrigin)

Semantic Relatedness
(Type(Invictus), Type(Americans))

n1

n2

n3
n4

n5

n6

n7

n8

n9

n10

n11

[0.54,0.53]

[1.0,1.0]

[0.56,0.48]

[0.89,0.65]

[0.71,1.0]

[0.95,0.65]

[0.54,0.48]

[0.51,0.52]
[0.71,1.0]

[1.0,1.0]

Invictus, 
starring,

Matt Damon

Matt Damon, 
birthPlace,
Cambridge

Cambridge,
country,

United States

Chicago,
country,

United States

U. Of Chiacago,
city,

Chicago

Lauren Oliver,
almaMater,

U. Of Chicago

Lauren Oliver,
nationality,
Americans

Lauren Oliver,
citizenship,
Americans

Morgan Freeman
nationality,
Americans

Morgan Freeman
stateOfOrigin,

Americans

[0.81,1.0]

Invictus, 
starring,
Morgan 
Freeman

[0.51,0.53]

[1.0,1.0]

[0.71,1.0]

[0.81,1.0]

Local triple embedding

Edge features

Fig. 1. Feature triple line graph.

Figure 1 shows an excerpt of feature triple line graph. We observe that nodes
are endowed with features in the form of local triple embeddings, that is, embed-
dings computed by only looking at the triple elements (see Sect. 3.1). As for the
edges, the figure shows a two-dimensional feature vector for each edge. The
first dimension maintains the semantic relatedness between the predicates in the
two neighbor nodes computed considering predicate co-occurrences in knowl-
edge graph triples [25]. As an example, the relatedness between starring and
stateOfOrigin is 0.54 while that between stateOfOrigin and nationality 0.71. The
second dimension considers the relatedness between the type (e.g., Actor, Movie,
Place) of entities not shared by neighbor nodes. As an example, for the node n1

(Invictus, starring, M. Freeman) and n2 (M. Freeman, stateOfOrigin, Americans)
the not shared entities are Invictus1 and Americans2 whose type in the DBpedia
KG are Film and Country, respectively. The semantic relatedness between these

1 https://dbpedia.org/page/Invictus (film).
2 https://dbpedia.org/page/Americans.

https://dbpedia.org/page/Invictus_(film)
https://dbpedia.org/page/Americans
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types is 0.53 [29]. Note that the edge feature vector can be further extended
to include additional dimensions considering, for instance, the cosine similarity
between local triple embeddings or topological information such as the differ-
ence between node degrees. Going from the knowledge graph G to a feature-rich
triple line graph GL, where triples are first-class-citizens, paves the way toward
designing learning architectures that can leverage both node features, that in
our context represent local triple embeddings obtained from G, and edge fea-
tures that capture different relatedness perspective between adjacent triples.

Triple Embeddings via Node and Edge Features. We introduced in the
previous section a novel representation of the original knowledge graph G called
feature triple line graph GL. We are now ready to show how LoGNet learns
triple embeddings by intertwining information from G and GL. LoGNet is based
on GNNs that learn node representations by recursively aggregating and trans-
forming features of neighbor nodes [15]. In particular, as edge feature vectors
in GL include D-dimensions, LoGNet performs a separate weighted convolution
operation for each dimension; the i-th feature value of dimension d is used to
weight the contributions of node neighbors on that dimension. Concerning the
general form of GNN outline in Sect. 2, we shall now make explicit the multi-
dimensional edge feature vectors present in the feature triple line graph. For
each dimension d of edge features, we consider the following formulation:

Ĥ(l,d) = σ
(
Ẽi,j,d · H(l) · W (l,d)

)
, (2)

where Ĥ(l,d) denotes the matrix of embeddings at level l on dimension d, Ẽi,j,d

is the convolution coefficient matrix, H(l) the hidden state at layer l and W (l,d)

a weight matrix. The D-dimensional information is is aggregated as follows:

H
(l+1)
i = σ

[ D⊕

d=1

(
Ĥ(l,d))W (d)

⊕
]

(3)

where
⊕

is an aggregation function (e.g., average) and W
(d)
⊕ learnable weights.

Edge Feature Aggregation. Edge features represent an important element of
innovation for LoGNet and can be seen as driving a sort of edge-centered atten-
tion mechanism. Each of the D edge features can be seen as a different attention
coefficient. Multiple ways (instantiations of the function ⊕) can be used to aggre-
gate edge features along the D dimensions. When considering aggregation based
on sum, that is, ⊕ =

∑
we obtain:

H
(l+1)
i = σ

[ D∑

d=1

(
Ĥ(l,d))·W (d)

sum

]
= σ

[ D∑

d=1

(
σ
( ∑

j∈N (i)

ei,j,d·h(l,d)
j ·W (l,d)

))
·W (d)

sum

]

We underline that the architecture of LoGNet differs from the classical GNN
models in one central respect. The GNN adjacency matrix A is either a binary
matrix denoting node adjacency (as in GAT) or a positive matrix with only
one dimension capturing edge features (as in GCN). Contrarily, the LoGNet
model builds upon a D dimensional edge feature matrix obtained by investigating
different types of relatedness between triples in the feature triple line graph.
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4 Anomalous Predicate Detection

We apply the LoGNet framework to the task of anomalous predicate detec-
tion [18]. Given a triple (s, p, o), the goal is to check whether the predicate
p correctly models the relation between the subject s and the object o. As an
example, (I’ m a looser, recordedIn, Abbey Road) would seem correct. However,
when contextualizing the triple, by looking at the neighbor triples, it is imme-
diate to see that the fact refers to the wrong entity Abbey Road; it refers to
the street and not to the recording studio Abbey Road Studio [21]. This example
shows the importance of considering both a local perspective (i.e., among the
triple elements) and a global (i.e., wrt neighbor triples) to have a more refined
assessment of the plausibility of the predicate.

Problem 1 (Anomalous Predicate Detection). Given G= (VG, EG, TG) and the
set of triple embeddings TG associated with the triples TG, our goal is to devise
a scoring function fA:(s, p, o)�→R, which give an a triple t ∈ TG assigns a plau-
sibility score to the predicate p.

This section shows how LoGNet can be adapted to tackle this problem. The
main challenge that arises concerns how to combine local and global triple repre-
sentations to find the plausibility of a predicate. We introduce a local and global
predicate plausibility score and optimize them to solve this challenge.

Local Plausibility Measure. To assess the plausibility of a predicate from a
local perspective, we can readily use any of the existing scoring functions avail-
able from knowledge graph embedding techniques [5]. By considering TransE,
the local plausibility of a triple can be measured as:

cl(s,p,o) = ‖hs + hp − ho‖2 (4)

where hs, hp, and ho are either the embeddings of the triple elements found by
the Emb(·) function or the hidden representations of the triple elements obtained
from the BiGRU. The learning model can spot anomalous predicates from a local
perspective by minimizing the above equation. Nevertheless, this approach does
not consider the context of a triple in terms of neighbor predicates, which can
fail to understand correlation and influence among triples. To this end, we also
introduce a global plausibility measure.

Global Plausibility Measure. We compare information resulting from local
triple embeddings, computed from G, and global triple embeddings, computed
from the feature triple line graph GL, to improve the overall plausibility check.
In particular, minimizing the difference between local and global plausibility can
point out anomalous predicates. More formally:

cg(s,p,o) = ‖z − h‖2 (5)

where z is the global triple embedding and h the local one.
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Joint Optimization. We define the plausibility as a linear combination of the
local and global plausibility:

c(s, p, o) = αcl + βcg (6)

where the hyper-parameter α and β with β = (1-α) weight the importance of
the two scores normalized. To optimize the model, we leverage a margin based
loss function to distinguish between positive triples and negative ones:

L =
∑

(s,p,o)∈T+
G

∑

(s’,p,o’)∈T −
G

[
θ + c(s, p, o) − c(s’, p, o’)

]
(7)

where θ > 0 is the margin hyper-parameter, T+
G is the set of positive triples, and

T−
G is the set of negative triples. At this point, with the model trained, we can

assess the anomaly of a predicate in a triple (s, p, o) as follows:

Ps(s, p, o) = c(s, p, o) (8)

5 Experiments

We now report on the evaluation and comparison with related work in two
tasks: anomalous predicate detection and triple classification. LoGNet3 has been
implemented using the DGL4 library. We used Adam as an optimizer with a fixed
batch size of 512 and initialized all model parameters via the Xavier initializer.
We conducted a grid search to set the hyper-parameters learning rate, the weight
of the plausibility scores, and the margin to their best values. All experiments
have been conducted on an RTX6000 GPU and are the average of 5 runs (95%
c.i). The goal of the evaluation is to answer the following research questions:
Q1: How does LoGNet compare to the state-of-the-art in anomalous predicate
detection? Q2: How does LoGNet compare with the state-of-the-art Triple2Vec?
Q3: What is the impact of the plausibility on the quality of triple embeddings?

Datasets. For anomalous predicate detection, we used the following datasets:
NELL [6]: it includes ∼75K entities, 200 predicates and ∼308K triples; DBPE-
DIA (DBP) [29]: it is a KG extracted from Wikipedia. This is a subset of
DBpedia with neither typing information nor literals. It includes ∼2M entities,
661 predicates and ∼1.2M triples; DBPEDIA1M (DBP1M): a subset of the
dataset in [29], which includes 1M entities. For triple classification, we consid-
ered DBLP [33]: this is a subset of the DBLP database containing information
about authors, papers, venues, and topics. Labels are provided for authors that
are assigned one among four labels (i.e., database, data mining, machine learning,
and information retrieval); Foursquare [17]: this dataset includes information
about users, places, points of interests, and timestamps. Labels are available for
points of interest that are given one among ten labels; Yago [33]: this dataset
is a subset of the Yago KG5 focused on the domain of movies. Here, labels are
available for movies assigned one or more among five available labels.
3 https://github.com/giuseppepirro/lognet.
4 https://www.dgl.ai.
5 http://yago-knowledge.org/.

https://github.com/giuseppepirro/lognet
https://www.dgl.ai
http://yago-knowledge.org/
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5.1 Q1: Anomalous Predicate Detection

We evaluate the performance of LoGNet as compared to the state-of-the-art. We
note that this paper does not aim to tackle anomalous predicate detection specif-
ically; we aim to show novel applications of triple embeddings. We considered
the following approaches: RotatE [30] and ConvE [11] node/predicate embed-
dings; KGist [2]: this approaches leverages rules to rule out incomplete and erro-
neous information in KGs; KGTtm [18]: this approach introduces a triple trust-
worthiness measure based on semantic information derived from triples along
with global information; KBAT [23]: this approach uses an attention mech-
anism to capture features of the neighborhood of entities; Triple2Vec: we fed
the triple embeddings obtained by Triple2Vec along with the labels to a one-vs
rest logistic regressor. For LoGNet, we consider a three-layer model in two vari-
ants: (i) LoGNetE where local triple embeddings were obtained by concatenating
the embeddings of the subject, predicate, and object obtained via ConvE6; (ii)
LoGNetG where local triple embeddings were obtained via BiGRU. Moreover,
we considered a 3-dimensional edge feature vector including predicate related-
ness [29], subject and object type relatedness. We used d = 128 as embedding
dimension.

Experimental Setting and Metrics. We used the NELL and DBpedia KGs.
As there is no explicit information about anomalous predicates, we assumed
that all triples available were correct and assigned them the label 1. To generate
negative examples that were given a label 0, we adopted the same method as
the state-of-the-art [18]. Given the true triple (Newton, nationality, England), a
potential negative triple is (Newton, nationality, American) rather than (Newton,
nationality, Google), which have been obtained by randomly replacing the object
of the original triple. We considered different corruption percentages, that is,
{0.05%, 1%, 2%, 3%, 5%} of the available true triples. The goal of the experi-
ments is to identify triples that include anomalous predicates. To evaluate the
performance of the systems, as done in the similar task of detecting incorrect
facts (e.g., [29]), we considered the AUC score, which is useful to express the
probability that a triple including a correct predicate receives a higher score
than a triple including an anomalous one.

Results. From the results in Table 1 we observe: (1) Triple2Vec and LoGNet con-
sistently outperform the competitors in the larger datasets (DBpedia, NELL).
As ConvE, RotatE, KBAT, we observe the worst-performing results. The pos-
sible reason for such a behavior is that these systems were originally designed
to tackle the KG completion task, different from anomalous predicate detection.
Indeed, while KG completion aims to understand which part of a triple is miss-
ing, anomalous predicate detection is concerned with understanding whether the
predicate in a triple makes sense. This underlines two aspects: (i) the need for
specific techniques to face this task; (ii) the need to define triple embedding
mechanisms alternative to those based on the aggregation of triple elements; (2)
Approaches like KGTm and KGist that were designed to detect triple anomaly
6 With RotatE and TransE we obtained inferior results.
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Table 1. Anomalous predicate detection. The best AUC values are reported in bold.

KG % Corr. ConvE RotatE KGTtm KBAT KGist T2Vec LNetE LNetG

DBP 0.05% 0.532 0.542 0.674 0.553 0.532 0.678 0.679 0.684

1% 0.526 0.534 0.671 0.550 0.534 0.675 0.680 0.691

2% 0.524 0.525 0.670 0.546 0.542 0.672 0.672 0.687

3% 0.513 0.521 0.667 0.538 0.560 0.668 0.668 0.671

5% 0.501 0.513 0.662 0.535 0.561 0.670 0.675 0.680

DBP1M 0.05% 0.543 0.567 0.687 0.561 0.547 0.6912 0.696 0.702

1% 0.536 0.560 0.671 0.560 0.541 0.687 0.690 0.696

2% 0.531 0.556 0.676 0.559 0.550 0.678 0.669 0.671

3% 0.530 0.542 0.678 0.551 0.546 0.6751 0.677 0.679

5% 0.526 0.534 0.674 0.541 0.576 0.671 0.673 0.681

NELL 0.05% 0.531 0.534 0.614 0.529 0.54 0.6214 0.621 0.631

1% 0.5301 0.532 0.623 0.546 0.543 0.6245 0.625 0.632

2% 0.523 0.521 0.638 0.543 0.542 0.641 0.631 0.647

3% 0.513 0.516 0.622 0.526 0.552 0.623 0.624 0.631

5% 0.502 0.512 0.637 0.518 0.553 0.6401 0.641 0.655

perform better than ConvE, RotatE, and KBAT. However, approaches based on
triple embeddings performed consistently better. The reason may be the usage
of the line graph construction. This novel structure plays a crucial role in bet-
ter capturing the contextual structure of a triple wrt neighbor triples compared
to learned rules or paths used by KGTtm and KGist. Moreover, the interplay
between the local triple representation, learned by treating triples as bidirec-
tional sequences, and the global triple representation provides a fine-grained
mechanism to spot predicate anomalies. We observe that in the smallest dataset
DBpedia1M, in one case Triple2Vec performs negligibly better than LoGNet; (3)
Comparing LoGNetE and LoGNetG, we observe that the latter performs consis-
tently better. The reason for this behavior is that in the first case, local triple
embeddings, representing the initial features of the nodes, are learned by aggre-
gating the embeddings of the element of a triple. Consequently, triples sharing
entities and predicates will also share portions of the local triple embeddings.
On the other hand, in LoGNetG local triple embeddings are learned not only by
considering the sequential nature of triples but also by the fact that a triple can
be read in both forward and backward directions; (4) Comparing Triple2Vec and
LoGNet both based on triple embeddings, we observe that the former performs
worse than LoGNet. Although Triple2Vec deals with triples as a whole, it can-
not spot anomalous predicate at a finer-grained level as LoGNet. This may be
because LoGNet adopts a completely different approach based on a joint learn-
ing model leveraging local and global triple representations using node and edge
features. We observe that triple embeddings offer good support for detecting
anomalous predicates. The local triple representation obtained by modeling a
triple as a sequence and the global representation constructed on the feature
triple line graph where both nodes and edges have features and the context of a
triple is obtained from neighbor triples is generally a valid alternative compared
to approaches using rules or paths.



348 G. Pirrò

5.2 Q2: LoGNet vs Triple2Vec

We now shed more light on the differences between Triple2Vec and LoGNet. We
want to answer the following questions: (i) how does LoGNet perform when using
triple embeddings learned via Triple2Vec instead of local triple embeddings? (ii)
how does the semantics relatedness-based weighting mechanism of the edges of
the triple line graph used by Triple2Vec compare with LoGNet’s approach?

Experimental Setting. We considered two variants of LoGNet. The first,
denoted as LoGNetV , leverages embeddings learned by Triple2Vec instead of local
triple embeddings learned via BiGRU and still uses a 3-dimensional edge fea-
ture vector. In the second variant, denoted as LoGNetW , instead of using the
3-dimensional feature vector, we only consider the relatedness between the pred-
icates of neighbor triples (hence a 1-d feature vector).

Table 2. Variants of LoGNet.

KG % Corr. triples LoGNet LoGNetV LoGNetW

DBP 0.05% 0.6842 0.6832 0.6124

1% 0.6912 0.6879 0.6613

2% 0.6873 0.6823 0.6731

3% 0.6712 0.6689 0.6612

5% 0.6803 0.6734 0.6352

DBP1M 0.05% 0.7022 0.6987 0.6825

1% 0.6967 0.6823 0.6742

2% 0.6712 0.6711 0.6531

3% 0.6790 0.6732 0.6643

5% 0.6816 0.6789 0.6703

NELL 0.05% 0.6312 0.6235 0.6124

1% 0.6321 0.6256 0.6013

2% 0.6476 0.6342 0.6235

3% 0.6311 0.6211 0.6134

5% 0.6553 0.6478 0.6391

Results. We report in
Table 2 results for the
anomalous predicate detec-
tion task and refer to
LoGNetG as LoGNet. We
make the following obser-
vations: (1) The usage of
triple embeddings learned
by Triple2Vec instead of
local triple embeddings in
LoGNet does not bring any
tangible benefit. LoGNetV
performs slightly worse
than LoGNet in all exper-
iments. The downside of
using this approach is
that it requires paying the
training time cost for both
Triple2Vec and LoGNet. Moreover, learning triple embeddings by looking at
triples from their sequential perspective has an important role in the overall
quality of triple embeddings; (2) Using a 1-d edge feature vector downgrades the
performance of LoGNet. We also observe that LoGNetW performs worse than
Triple2Vec (Table 1). The reason for this behavior may be found in the fact that
Triple2Vec needs weights to find high-quality walks on the triple line graph that
can correctly model node neighborhoods. The GNNs setting, where neighbor
information is obtained via a message-passing scheme, brings some improve-
ment.

Results on Triple Classification. We also compared LoGNet and Triple2Vec
on the triple classification task in terms of Micro-F1 and Macro-F1 scores follow-
ing the methodology described in Triple2Vec [13]. We considered the following
competitors: metapath2vec [12], node2vec [14], and DeepWalk [24] configured
with the best parameters reported in their respective papers. As these approaches
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compute embeddings for each node only (not for predicates), a triple embedding
was obtained by using the Hadamard operator over the embeddings of the triple
endpoints as it was the best performing; ConvE [11] and RotatE [30] configured
with the best parameters reported in their respective paper and implemented.
Triple embeddings were obtained by concatenating the embeddings of the triple
endpoints and the predicate embedding. Figure 2 reports the results. We observe
that the approaches based on triple embeddings consistently outperform com-
petitors. This is especially true in the DBLP and Yago datasets. We also note
that metapath2vec performs worse than node2vec and DeepWalk, although the
former has been proposed to work on knowledge graphs. This may be explained
by the fact that the metapaths used in the experiments and previously used by
Hussein et al. [17] while being able to capture node embeddings, fail short in
capturing triple embeddings.

Fig. 2. Results on triple classification.

Moreover, for triple embeddings obtained via aggregation, we can see that
the performance is even worse than those obtained by metapath2vec, node2vec,
and Deepwalk, which did not consider the embeddings of predicates to compute
triple embeddings. This may be due to two main reasons. First, the goal of these
approaches is to learn entity and predicate embeddings for the link prediction
task. Hence, the concatenation of entity and predicate embeddings does not
correctly capture triple embeddings. Second, as these approaches compute a
single predicate and node embedding, these embeddings will be shared by all
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triples in which they appear. As an example, the embeddings of the two triples
(s, p, o) and (s, p, q) will only differ in the concatenation of the embedding of their
object. This underlines the fact that a direct way to compute triple embeddings
can capture better and discriminate the roles of the same predicate/entity in
different triples; (3) LoGNet performs better than Triple2Vec, especially in the
variant that computes local triple embeddings using the BiGRU (i.e., LoGNetG).
This may be due to three main reasons. First, the Triple2Vec’s triple embeddings
need to be fed into a one-vs-rest logistic regressor for triple classification; this
additional optimization step is not related to the original task. On the other
hand, LoGNet is directly trained to perform triple classification. Second, the
BiGRU approach may provide better local triple embeddings as it considers the
sequential nature of triples. Third, the LoGNet mechanism may be better able
to weight the importance of neighbor triples (nodes of GL) than the weighting
mechanism used by Triple2Vec based on predicate relatedness.

5.3 Q3: Ablation Study

We conducted an ablation study introducing two more variants of LoGNet: (i)
LoGNetL with only local triple embeddings and the local plausibility measure
in Eq. (6); (ii) LoGNetG with only global triple representation and the global
plausibility in Eq. (6). Table 3 reports the results.

Table 3. Ablation study.

KG % Corr. triples LoGNet LoGNetL LoGNetG

DBP 0.05% 0.6842 0.6611 0.6132

1% 0.6912 0.6712 0.6567

2% 0.6873 0.6684 0.6648

3% 0.6712 0.6701 0.6467

5% 0.6803 0.6734 0.6212

DBP1M 0.05% 0.7022 0.6911 0.6674

1% 0.6967 0.6856 0.6689

2% 0.6712 0.6687 0.6511

3% 0.6790 0.6701 0.6621

5% 0.6816 0.6745 0.6687

NELL 0.05% 0.6312 0.6256 0.6073

1% 0.6321 0.6301 0.5998

2% 0.6476 0.6412 0.6278

3% 0.6311 0.6287 0.6192

5% 0.6553 0.6493 0.6398

Results. We observe that
the local plausibility score
(LoGNetL) seems to bet-
ter capture anomalous pred-
icates in triples. This comes
as no surprise since local
triple embeddings look at
each triple from a finer-
grained perspective, effec-
tively analyzing the sequen-
tial nature of the triple and
the dependency between sub-
ject, predicate, and object
(reading the triple both for-
ward and backward). On
the other hand, LoGNetG
can only rely on triple
neighbor information aggre-
gation, which cannot look into the triple. The fully-fledged LoGNet brings a clear
improvement to the variants only considering either the local or global plausi-
bility. This underlines that it is not convenient to separate local and global
information.
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6 Conclusions and Future Work

This paper showed how to compute triple embeddings by leveraging node and
edge features derived from a KG. Our triple-centric embedding approach brings
a refreshing perspective to a landscape dominated by node/edge-centric appli-
cations. It can support a variety of applications like path-based downstream
applications where paths can be embedded as sequences of triple embeddings
or data release scenarios where the same predicate may or not be considered
sensitive depending on the subject and object like in the triples (Pat, marriedTo,
Claire) and (Frank, marriedTo, Mary). Using the same predicate embedding to
compute the embeddings of two triples may be counter-intuitive.
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