
Radar Station: Using KG Embeddings
for Semantic Table Interpretation

and Entity Disambiguation

Jixiong Liu1,2 , Viet-Phi Huynh1, Yoan Chabot1(B) , and Raphael Troncy2

1 Orange, Belfort, France
yoan.chabot@orange.com

2 EURECOM, Sophia-antipolis, France

Abstract. Relational tables are widely used to store information about
entities and their attributes and they are the de-facto format for training
AI algorithms. Numerous Semantic Table Interpretation approaches have
been proposed in particular for the so-called cell-entity annotation task
aiming at disambiguating the values of table cells given reference knowl-
edge graphs (KGs). Among these methods, heuristic-based ones have
demonstrated to be the ones reaching the best performance, often relying
on the column types and on the inter-column relationships aggregated by
voting strategies. However, they often ignore other column-wised seman-
tic similarities and are very sensitive to error propagation (e.g. if the
type annotation is incorrect, often such systems propagate the entity
annotation error in the target column). In this paper, we propose Radar
Station, a hybrid system that aims to add a semantic disambiguation
step after a previously identified cell-entity annotation. Radar Station
takes into account the entire column as context and uses graph embed-
dings to capture latent relationships between entities to improve their
disambiguation. We evaluate Radar Station using several graph embed-
ding models belonging to different families on Web tables as well as
on synthetic datasets. We demonstrate that our approach can lead to
an accuracy improvement of 3% compared to the heuristics-based sys-
tems. Furthermore, we empirically observe that among the various graph
embeddings families, the ones relying on fine-tuned translation distance
show superior performance compared to other models.

Keywords: Cell-entity annotation · Graph embeddings · Semantic
Table Interpretation · Entity disambiguation

1 Introduction

Tabular data is one of the most commonly used formats. This condensed repre-
sentation of information offers a compact visualisation of the data that is easy
for users to access and use. Among the wide variety of tabular data, relational
tables organise entity attributes into columns and are used extensively in enter-
prise data repositories and on the Web for storing information and for training
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 498–515, 2022.
https://doi.org/10.1007/978-3-031-19433-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19433-7_29&domain=pdf
http://orcid.org/0000-0002-8750-8637
http://orcid.org/0000-0001-5639-1504
http://orcid.org/0000-0003-0457-1436
https://doi.org/10.1007/978-3-031-19433-7_29

Radar Station 499

AI algorithms. We argue that adding a semantic layer on top of such rich data
source using KGs can be beneficial to several downstream tasks such as datasets
indexing [2], KG enrichment [25], or dataset recommendation [32]. This process
of automatically understanding what tabular data is about is named Semantic
Table Interpretation (STI). Cell-entity annotation [16] (CEA) is one of the fun-
damental tasks for STI. This task is often performed by retrieving and scoring
possible entity candidates (from a target KG) to disambiguate a cell value. Next,
the result is used as input for performing Column-Type Annotation (CTA) and
Columns-Property Annotation (CPA) [1,6,13,21]. However, associating a men-
tion contained in a cell with an entity in a KG is a complex task requiring the
resolution of several issues including handling properly the syntactic heterogene-
ity of mentions (e.g. the Wikidata entity “France” (Q142) may be referenced in
a table by mentions like “The Republic of France” or “FRA”), the polysemy
of terms (e.g. “Apple” can refer to a fruit or a company), and the diversity
and complexity of table formats and layouts (e.g. matrices, relational table with
hidden subjects, etc.).

Numerous approaches have been proposed for handling these issues. Among
these methods, heuristic-based iterative approaches [1,6,13,21] aim to lever-
age the column types and the inter-column relationships aggregated by voting
strategies for disambiguating cell annotations. They have demonstrated to be the
methods reaching the best performance in the SemTab challenge series [9,16,17].
However, one drawback of these strategies is related to error propagation. Often,
such systems propagate the entity annotation error in the target column. Fur-
thermore, they also often ignore other column-wised semantic similarities: for
example, books appearing in the same column may share the same topic.

To address these limitations, we propose a new hybrid disambiguation system
called Radar Station that takes advantage of both an iterative disambiguation
pipeline and semantic disambiguation using graph embedding similarities. Radar
Station takes as input CEA annotations and associated confidence scores that
quantify the level of certainty associated with each result. Our approach uses
an ambiguity detection module that detects cases where the cell annotation is
potentially wrong due to error propagation. In the following steps, the use of
graph embeddings allows Radar Station to potentially fix the wrong annota-
tions by taking into account semantic proximities (e.g. geometric proximity of
entities representing books) that are not directly encoded and captured in the
sole content of table columns. We evaluate Radar Station using several graph
embedding models belonging to different families on Web tables as well as on
synthetic datasets, and we provide a thorough analysis of the performance among
the graph embeddings models and the datasets.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
some definitions and the assumptions we made in this study. Next, we review the
many approaches that have been proposed for cell annotations and discuss their
limitations (Sect. 3). In Sect. 4, we present the Radar Station system and the use

500 J. Liu et al.

of embeddings for cell-entity disambiguation. Then, we present our experimental
settings in Sect. 5 and the evaluation using existing gold standards in Sect. 6.
Finally, we conclude and outline future work in Sect. 7.

2 Preliminaries

In this paper, we focus on relational tables since they are the most used type of
tabular data. Relational tables geometrically translate subjects from the same
topic and their attributes accordingly to a given orientation. More specifically, in
a horizontal table, a row describes the attributes of a given entity, and a column
contains the values of a given attribute for all entities contained in the table.
For example, Table 1 provides an example of relational table from the Limaye
dataset [19]. The last row describes the book “Ylesia” with its attributes, includ-
ing the published year (“2002”) and the platform (“e-book”). We assume that
the orientation of the input table is known and is either horizontal or vertical.
We also assume that a cell value does not contain more than a single entity and
that the system knows the target columns containing the entities to annotate.
Radar Station assumes that a table cell can always be correctly annotated with
an entity w.r.t this KG. Given the above assumptions, Radar Station is a system
that aims to improve cell disambiguation from annotations produced by an STI
system using a target KG (Wikidata, in our experiments). Given Table 1, Radar
Station annotates the cell “Traitor” with the entity “Q7833036”, the science
fiction book, using the table context, while often, traditional STI system will
disambiguate this cell with the anti-war romance novel “Q21161161” which has
the same label.

Table 1. Table file405599 0 cols1 rows23.csv from Limaye dataset, row 13–17

2002 Enemy Lines : Rebel Dream

2002 Enemy Lines : Rebel Stand

2002 Traitor

2002 Destiny’s Way

2002 Ylesia e - book

3 Related Work

STI covers five main tasks: CEA, CTA, CPA [16], row-to-instance annotation
and table topic annotation [24]. Radar Station aims to improve the CEA dis-
ambiguation. Thus, this section reviews the current state-of-the-art methods for
the CEA task on relational tables. We classify them into three groups: heuristic-
based approaches, iterative disambiguation, and graph embeddings approaches,
and we discuss their strengths and limitations [20].

Radar Station 501

3.1 Heuristic-Based Approaches

Starting from a basic lookup service that generates target candidates for a given
cell mention, heuristic-based approaches leverage diverse methods interpreting
the table context to filter unreliable candidates and to produce a final annota-
tion. Based on heuristic candidate generation and string similarities measures,
[19] is one of the first works on STI. It constructs a graph-based algorithm that
exploits learnable features from column context, row context, and relation con-
text to construct a confidence function for each candidate for annotating a cell.
TabEL [3] introduces a hybrid system that leverages probabilities to build a
graphical model for representing the interactions between cells, columns, and
headers. ADOG [22] generates features from string similarities, frequencies of
properties, and the normalized Elasticsearch score. Then, these features are cal-
ibrated with the candidate’s TF-IDF score according to entities’ types in the
same column. Our approach takes as input a list of CEA candidate annotations
together with their scores (generated by such an existing CEA annotation tool),
and detects the presence of potential ambiguities in order to select the right
candidate from this closed set.

3.2 Candidate Disambiguation

Adding a disambiguation process on top of a heuristic-based approach can sig-
nificantly improve the performance of an annotation system. Iterative processing
is one of the most commonly-used methods for improving pre-annotated results.
The iteration loop aims to collect the results of several annotation tasks, mutu-
ally improving the compatibility between annotations (e.g. taking into account
the type of a column produced by the CTA to choose the right CEA candidates),
and increasing the scores of candidates that would not have been chosen in the
first place. For example, [35] uses a loop that exploits the CTA annotation of a
given column to select candidate cells that feature that type and then redefines a
new CTA annotation for the column by exploiting the entities selected. Regard-
ing the CEA disambiguation, we identified two classes of iterative systems. First,
T2K [25] and TableMiner+ [33] introduce a loop in the pipeline that ends when
the result becomes stable. The other iterative systems [1,6,13,21] provide a pre-
defined pipeline with sequential modules (e.g. the pipeline of LinkingPark [6] is
composed of a CEA pre-scoring, then a CPA step, and finally the use of the CPA
annotations to generate the final CEA annotations).

Radar Station uses the output scores of an existing STI system. It currently
supports the DAGOBAH-SL [13,14], MTab [21] and BBW [27] systems which
have all competed during the SemTab Challenge series [9,17] and are selected
as baseline systems during the evaluation of Radar Station. These systems use
string similarity in the scoring system and leverage table’s global information car-
ried out by the CTA and CPA annotations to generate more precise CEA annota-
tions. For cell annotations, they evaluate whether a candidate entity ec ∈ Ec(em)

502 J. Liu et al.

retrieved from the KG is a good representation of the corresponding table cell em
by incorporating the table context of em and KG context of ec in the score of ec.
Although these approaches show great performance for datasets like BioTable
and HardTable from SemTab, they still have limitations as described in Sect. 1.
First, the use of a unique column type or columns pairs relationship potentially
propagates type (resp. relation) annotation error through cell annotations. Sec-
ond, leveraging only entities’ type (resp. relations) result does not allow to take
into account more attributes and properties in the disambiguation process. For
example, a column type may not bring necessary information such as a person’s
nationality, building localization, or object ownership for disambiguating enti-
ties. Facing these challenges, Radar Station first activates an ambiguity detection
module that detects cases where the cell annotation is potentially wrong. Mean-
while, it considers entities’ embeddings to leverage more similarity measures
inside a given column.

3.3 Usage of Graph Embeddings

Methods applying graph embeddings for STI focus on entity-level in which the
models learn embedding representations for entities of a table cell instead of
the cell itself. Specifically, KG embedding techniques are used to encode the
entities and their relationships into a vector space. STI approaches using deep
learning models are based on the intuition that the entities in the same column
should exhibit semantic similarities. Hence, they should be close to each other
in the embedding space w.r.t. a cosine similarity distance [11] or an Euclidean
distance [5].

Vasilis et al. [11] provide different methods. One of them assumes that the
correct CEA candidates in a column should be semantically close. From this
assumption, a weighted correlation subgraph in which a node represents a CEA
candidate is constructed. The edges are weighted by the cosine similarity between
two related nodes. The best candidates are the ones whose accumulated weights
over all incoming and outcoming edges are the highest. In addition, a hybrid
system combining a correlation subgraph method and an ontology matching sys-
tem, is also introduced, which considerably improves the final result. Yasamin
et al. [12] further enhance this approach by taking the header of the table into
account for ontology matching and giving more weights to unique cell candidates
when calculating embeddings Page-Rank. DAGOBAH-Embedding [5] follows the
same assumption that all entities in the same column of the table should be close
to each other in the embeddings space. Consequently, the correct candidates are
assumed to belong to a few clusters. They apply a K-means clustering using
TransE pre-trained KG embeddings to cluster the entity candidates. The good
clusters with high coverage are selected by a weighted voting strategy. Exper-
imental results prove that they have successfully improved the accuracy of the
CTA task. However, the system is also misled by incorrect candidates during
the CEA task when correct candidates are not in selected clusters. TURL [10]

Radar Station 503

leverages the BERT model for STI and table augmentation with the help of a
visibility matrix for capturing table structure. Although TURL introduces entity
embeddings as one of the inputs to its model to assign information to entities,
the entity embeddings do not embed properties about the entities in the graph,
such as the fact that neighbouring nodes are missing in them.

The contributions of our approach are as follows. First, we use embeddings
only during the disambiguation step to benefit from both the iterative disam-
biguation and the embeddings disambiguation. Second, we provide a new scoring
mechanism that takes into account the scores generated by CEA approaches and
the distance between the entities in the embedding space.

4 System Description

Radar Station is not a standalone annotation system. It is built on top of a given
annotation system and resolves ambiguities detected in the annotated results.
We choose to use DAGOBAH-SL [26] as the base annotation system to illustrate
the process of Radar Station. We motivate the need for Radar Station observing
that pure string-based matching and iterative scoring methods are limited in
situations where: i) the target KG is incomplete; ii) the matching mechanism
failed; iii) the CTA or CPA disambiguation can not provide enough informa-
tion in very ambiguous cases (e.g. candidates belonging to the same type or no
property identified). These situations also cover cases with limited row numbers
that can annotate a unique column type (resp. unique columns relationship) by
majority voting. For example, voting for a common type given only the two cell
mentions “Apple” and “Blackberry” may lead to randomly select the company
or the fruit.

Fig. 1. Illustration of Radar Station with DAGOBAH-SL results. The plot is generated
with RotatE embeddings after dimension reduction by T-SNE.

504 J. Liu et al.

Figure 1 provides an example where DAGOBAH-SL is not able to handle
properly an ambiguous case: two potential candidates with the same score for the
cell “Traitor”. The ambiguity comes from an unsuccessful matching between the
column “2002” with literal information “30 July 2002” of candidate “Q7833036”
for entity scoring and CPA disambiguation. CTA disambiguation does not work
in this case since these two candidates are books with the type “literary work”
(“Q7725634”). “Q21161161” is a science fiction novel and “Q7833036”is an anti-
wars romance novel.

We do not aim at improving the performance of the system by relying on
clever string matching methods. Instead, we expect to find more semantic sim-
ilarities using the full column as context with the help of the scores generated
from the row context. In this example, one could identify that the correct entity
is “Q7833036” since the topic of this table is the science fiction series “The
New Jedi Order” from Star Wars. This relationship is missing in the table cells,
but it still could be beneficial for the disambiguation steps. Radar Station aims
to leverage graph embeddings to dig similarities alongside the entity types and
common relationships inside the tables. The architecture of Radar Station is
illustrated in Fig. 2 and the modules are described in the following sections.
Table 2 summarizes the notation used in the Radar Station approach.

Fig. 2. Overview of the Radar Station pipeline.

Table 2. Summary of the notation used to define Radar Station

Notation Description

C The collection of cells from the target column

Ec The collection of the context entities representing the column C
Amci The collection of the ambiguous entities extracted from the cell ci

Sc(e) The initial score for the candidate e generated from the previous annotation system,
in our case, DAGOBAH-SL

Em(e) The embedding of a given entity e

Ek The collection of K nearest context entities of an ambiguous candidate am ∈ Amci

for the target column C, Ek ∈ Ec

Radar Station 505

4.1 Input Data Structure

Before running Radar Station, the information required by the system includes
the index of the cell in the table (row number and column number), and infor-
mation about all candidates for each cell without filtering the candidates. This
information includes an identification of each candidate and their confidence
score. The confidence score evaluates how compatible a candidate is with the
context information given by the table (e.g. row values, column type, columns-
pair relations).

4.2 Context Entities Selection

The row context has already been interpreted by DAGOBAH-SL and is used to
compute the confidence score of each candidate. The first step of Radar Station
is to build a column-wised context to support the disambiguation process. We
collect entities with the highest confidence score from all cells of a given column
C as the context entities set. In case of ambiguity, that is, multiple candidates
(n candidates) sharing the same highest score, we collect all of them, and the
score is divided by n. Other candidates are not taken into account to maximize
the trust for “sure” annotation from DAGOBAH-SL (e.g., only one candidate
with the highest score) and to avoid noise inside this column. For example, for
the row 15 in Fig. 1, both “Q7833036” and “Q21161161” are collected into the
context set with a score “0.008” (0.016/2), and for row 16, only “Q5265233” is
collected with a score “0.016”. The collected context entities set for the column
C are noted as Ec.

4.3 Ambiguity Detection

Radar Station detects ambiguous cells that are worthy to be disambiguated given
a tolerance t. Intuitively, t enables to relax the constraints one wants to have in
looking up candidates potentially matching a cell mention. Once a candidate’s
score is larger than t∗Max(scores), it is selected as one of the “top candidates”.
For example, if we set t = 1, “Q7833036” and “Q21161161” for row 15 of Fig. 1
will be among the top candidates. If we relax the tolerance t to 0.7, “Q1536329”
will also be considered as a top candidate. We denote “Ambiguities” as Am for
the case that the size of the top candidates is greater than or equal to two.
Radar Station is activated in this case and it will annotate the cell with one of
the candidates from the ambiguities. When there is no ambiguity inside a cell,
we directly output the single top candidate as the annotation.

506 J. Liu et al.

4.4 Radar Station Disambiguation

Algorithm 1. Radar Station disambiguation algorithm
Input: Cell index C and ambiguities for each cell Amci , ci ∈ C where the collected

context entities (or senders) of the target column is Ec.
Candidate scores from the annotation system {Sc(ei)}, ei ∈ Ec.
Candidate embeddings {Em(ei)}, ei ∈ Ec.

Output: Entity annotation selected by Radar Station.
1: build a KD-tree with all candidates’ embeddings {Em(ei)}
2: K ← min(|Ef |, 20)
3: for each cell ci from C do
4: if there is an ambiguity in Amci then
5: Ec ← filter entities from the same cell in Ec

6: for each ambiguous entity ami in Amci do
7: find the K nearest candidates of the ambiguous entity Ek in the KD-tree by

ignoring candidates from the same cell.
8: RadarScoreami ← 0
9: for each neighboring entity ej ∈ Ek do

10: RadarScoreami ← RadarScoreami +
Sc(ej)

distance(ami,ej)

11: end for
12: RadarScoreami ← RadarScoreami

K

13: g(ami) ← αRadarScoreami + Sc(ej)
14: end for
15: the annotation is the ambiguous entity with the highest g(ami)
16: end if
17: end for

In our approach, we leverage KG embeddings to uncover the entities’ co-
relationship from a table to improve the disambiguation step. The principle
of the Radar Station approach is inspired by radar station signal emissions.
The receiving signal power of a signal station depends on both the initial power
strength from the sending station and the distance between the sender and the
receiver. That is, the receiving signal will be stronger when the initial power
from the sender is stronger, and this receiving signal strength will decrease as
the distance increases. In our approach, we treat each context entity from the
same column as a signal sender, and receivers are the ambiguities to be resolved.
One ambiguous candidate captures signals from multiple neighbouring context
entities (i.e. senders) and the sum of the receiving signals is the confidence score
of the candidate. The disambiguation pseudo-code is presented in Algorithm 1.

We consider only the K nearest context entities to computer the final score
of an annotation in order to avoid noise and to optimize the performance. The
system first constructs a KD tree of all context entities for each column, and then
calls this KD tree to drop the K nearest context entities during the prediction
(lines 1–2). We set that the maximum K value is 20 (line 2). We set the initial
sender power strength with the confidence score generated by DAGOBAH-SL.

Radar Station 507

One ambiguous candidate ami detects K received signals from the surrounding
senders ej ∈ Ec (or context candidates) to generate the confidence score f(ami)
with the Function 1 (line 3–12), where Sc(ej) denotes DAGOBAH-SL scores of
the sender ej and distance(ami, ej) denotes the Euclidean distance between the
sender ej and the receiver ami.

In detail, for a target ami, we collect its top-K nearest neighbors from Ec,
where each context entity cj belongs to Ec. We have each context entity’s scores
Sc(cj) and the distance with the target candidate distance(ami, cj). We then
apply the Function 1. Like this, we could generate a confidence score for each of
those two target candidates. We divide each of their context entities’ confidence
score by the distance between those two candidates and then calculate the sum
to compare.

f(ami) =
1
K

∑

j<K

(
Sc(ej)

distance(ami, ej)
) (1)

The final result g(ami) for an ambiguous entity is the combination of Radar
Station score f(ami) and the initial DAGOBAH-SL confidence score Sc(ami)
introduced in Function 2 (line 13).

g(ami) = αf(ami) + Sc(ami) (2)

Our initial experiments showed that the average distance in the embedding
space between the target ambiguity and its top K nodes is approximately 1.
According to the Function 1, we know that f(ami) and Sc(ami) are roughly
in the same order of magnitude. Since we expect to disambiguate candidates
with a tolerance between 0.7 and 1, we need the value of the discrepancy caused
by f(ami) to be roughly within Sc(ami) ∗ 0.3. We originally set α to 0.3 and
we tested the following α values (0,3, 0.2, 0.1, 0.05, and 0.01). We empirically
observed that 0.05 gives the best results.

5 Experiments

In our experiments, we consider Wikidata as the target KG. We first rely on
the DAGOBAH-SL system to lookup for candidates for each entity cell. We
only consider the top 100 candidates according to the string similarity on entity
label and aliases. We evaluate the result on four different gold standard datasets:
T2D [25], Limaye [19], Tough Tables version 2 [8] and ShortTables.

5.1 Knowledge Graph Embeddings

Pre-trained KG embeddings can provide additional information for table under-
standing beyond the table context. Entities inside the same table column should
be somehow co-related, which means they may share the same entity type, similar
topics, or even attributes. In order to have the most suitable embeddings given
the latest version of Wikidata, we use the PyTorch-BigGraph framework [18]
for training embeddings. The triples used for the training are collected from a

508 J. Liu et al.

Wikidata dump published in May 20211. Before the training, the triples with
literal values and Wikimedia disambiguation page entities (e.g. “Q1151870”) are
filtered out. The selection of the final embeddings is made given our empirical
evaluation of Radar Station after fine-tuning the hyper-parameters. We consider
two representative translational distance models (TransE [4] and RotatE [28])
and two semantic matching models (DistMult [31] and ComplEx [29]) following
the classification of [30].

Translational distance models study the geometric distance between entities
inside the vector space. TransE [4] considers both entities and relations from
the same vector space. The training intends to adjust the three vectors from
a given triple (h, r, t) to the synchronized state until h+r ≈ t. In Pytorch-
BigGraph, we use the translation operator for generating the TransE model.
Unlike TransE’s translation, RotatE [28] regards the relation as a rotational
degree between heads and tails. It introduces a loss function based on h ◦ r ≈ t
for simulating the relation translation. We use the GraphVite’s [34] pre-trained
RotatE embeddings in our experiments.

Semantic matching models measure the similarity between entities and rela-
tions during the training. DistMult [31] is based on a bilinear scoring func-
tion hTMrt, where Mr is the relation matrix built on top of the entity. Com-
plEx [29] can be seen as a constrained variant of RESCAL [15] that leverages
fewer relation dimensions inside a complex space. The ComplEx score is defined
as Re(hT diag(r)t). In Pytorch-Biggraph training, we use the diagonal operator
for generating DistMult embeddings and iterations between complex diagonal and
dot operators for ComplEx embeddings.

5.2 Datasets

We evaluate Radar Station on three popular gold standards: T2D2, Limaye3,
and Tough Tables version 24. The original T2D and Limaye datasets contain
some annotation errors that we have corrected. As T2D and Limaye are gold
standards based on DBpedia and Radar Station is a Wikidata-based annota-
tion system, we translate the DBPedia entities given in the gold standards into
Wikidata entities through the “Wikidata item” hyperlink from Wikipedia pages
of DBpedia entities. We manually corrected this translation when it was failing.
Since the number of entities in Wikidata is larger than the number of entities in
DBpedia [23], the annotation based on Wikidata is also harder with more candi-
dates to disambiguate. We publish the new resulting ground truth on Zenodo (see

1 https://archive.org/details/wikibase-wikidatawiki-20210521.
2 http://webdatacommons.org/webtables/goldstandardV2.html.
3 http://websail-fe.cs.northwestern.edu/TabEL/.
4 https://zenodo.org/record/6211551.

https://archive.org/details/wikibase-wikidatawiki-20210521
http://webdatacommons.org/webtables/goldstandardV2.html
http://websail-fe.cs.northwestern.edu/TabEL/
https://zenodo.org/record/6211551

Radar Station 509

Table 3. Gold standard datasets for evaluating STI approaches. The ambiguities are
based on DAGOBAH-SL scores

Gold standard #Tables Avg. #Rows Avg. #Col #Entities Ambiguities (t = 1) Ambiguities (t = 0.9)

Limaye 437 37 2 5,143 181 (3.52%) 685 (13.31%)

T2D 762 157 5 18,589 2,322 (12.49%) 8,852 (47.62%)

2T v2 180 1080 5 661,297 30,686(4.64%) 86,739(13.11%)

ShortTables 2237 2 5 4,474 1422 (31.78%) 1822 (40.72%)

the supplementary material). ShortTables is a new dataset we built from T2D,
in such a manner that each table only contains two rows. The aim of creating
such a dataset is to simulate extreme cases where voting strategies lack electors
(i.e. row entities) for a correct CTA (resp. CPA) annotation. The provenance
of T2D and Limaye is Web tables. We also consider a synthetic dataset named
Tough Tables version 2 (2T 2) to evaluate on more data types. We provide the
statistics of these gold standard datasets in Table 3.

6 Evaluation

We evaluate Radar Station with these four datasets varying the embeddings and
the tolerance threshold. A random selection of the highest scoring candidates
is considered as our baseline and noted as the original system name. We show
the overall result for t equals to 1, 0.95, and 0.9 based on DAGOBAH-SL scores
on four datasets with different embeddings in Table 4 and the fine-tuned result
based on DAGOBAH-SL, MTab and BBW with Limaye and T2D in Table 5.

6.1 Evaluation Settings

We aim to evaluate the performance of Radar Station on the ambiguity lists
and how it can influence the global annotations. Thus, we use three indicators
including Ambiguity quality (AP), Precision inside ambiguities (PA), and Global
precision (GP). AP (Eq. 3) shows the quality of generated ambiguity list after
the Ambiguity Detection step, that is, how many ambiguous cells contain a
ground truth in its top candidates. It indicates the extreme precision that we
could achieve in all ambiguous annotations, which is PA in Eq. 4. GP (Eq. 5) is
the overall precision in all labelled cells considering annotations generated with
or without Radar Station.

AP =
#Correct candidates in the candidate set of ambiguities

Ambiguities
(3)

PA =
Correct ambiguity disambiguations

Ambiguities
(4)

510 J. Liu et al.

Table 4. Radar Station evaluation based on DAGOBAH-SL scores. AP: Ambiguity
quality, PA: Precision inside ambiguities, GP, Global precision

t Methods Limaye T2D 2T v2 ShortTables

AP PA GP AP PA GP AP PA GP AP PA GP

1 DAGOBAH-SL 0.647 0.168 0.853 0.308 0.053 0.785 0.067 0.023 0.870 0.672 0.194 0.654

RS + TransE 0.630 0.870 0.294 0.813 0.041 0.871 0.355 0.673

RS + RotatE 0.636 0.870 0.289 0.812 0.044 0.871 0.363 0.673

RS + DistMult 0.391 0.861 0.163 0.798 0.034 0.870 0.229 0.658

RS + ComplEx 0.57 0.869 0.171 0.798 0.036 0.870 0.235 0.659

0.95 DAGOBAH-SL 0.614 0.296 0.853 0.332 0.180 0.785 0.327 0.208 0.870 0.671 0.302 0.654

RS + TransE 0.528 0.872 0.312 0.815 0.230 0.872 0.414 0.673

RS + RotatE 0.542 0.873 0.312 0.815 0.235 0.872 0.418 0.674

RS + DistMult 0.377 0.860 0.230 0.797 0.213 0.870 0.328 0.659

RS + ComplEx 0.435 0.864 0.233 0.798 0.219 0.870 0.334 0.660

0.9 DAGOBAH-SL 0.653 0.432 0.853 0.336 0.241 0.785 0.500 0.300 0.870 0.714 0.414 0.654

RS + TransE 0.570 0.872 0.323 0.815 0.313 0.872 0.532 0.684

RS + RotatE 0.578 0.873 0.322 0.814 0.318 0.872 0.536 0.684

RS + DistMult 0.475 0.860 0.274 0.797 0.303 0.870 0.466 0.668

RS + ComplEx 0.494 0.862 0.275 0.798 0.306 0.870 0.471 0.669

Table 5. Gold standard datasets for evaluating STI approaches with RotatE embed-
dings. AP: Ambiguity quality, PA: Precision inside ambiguities, GP, Global precision

Dataset System t AP Original output Radar Station

PA GP PA GP

Limaye DAGOBAH-SL 0.9 0.653 0.432 0.853 0.578 (+0.146) 0.873 (+0.020)

MTab 0.83 0.820 0.705 0.857 0.787 (+0.082) 0.875 (+0.018)

BBW 0.65 0.587 0.359 0.563 0.507 (+0.148) 0.597 (+0.034)

T2D DAGOBAH-SL 0.95 0.332 0.180 0.785 0.312 (+0.132) 0.815 (+0.030)

MTab 0.71 0.385 0.295 0.837 0.346 (+0.051) 0.857 (+0.020)

BBW 0.65 0.263 0.192 0.364 0.253 (+0.061) 0.382 (+0.018)

GP =
#Correct annotations

#Total labels
(5)

We also use the Cohen’s Kappa coefficient [7] to evaluate the independence
of the annotation from different embeddings models (kappa equals to 1 means
that two datasets are the same).

6.2 Analysis

Overall Result. We first observe from Table 4 that all the chosen embeddings
contribute to a significant improvement for PA in the ambiguous cases with
the chosen tolerance values and GP. We also notice that Radar Station brings
more improvements to GP for the Limaye (Max. 0.02), T2D (Max. 0.03), and

Radar Station 511

Fig. 3. Illustration of the Kappa test between different outputs on all datasets, t = 0.95.

ShortTables (Max. 0.03) than for 2T v2 (Max. 0.002). This drop for 2T v2 is
due to the distribution of the scores of the top candidates: i) as we can see, after
relaxing the tolerance from 1 to 0.9, AP for 2T v2 has dramatically increased in
comparison to the other datasets. Hence, there is no clear boundary between top
candidates and bad candidates for the 2T v2 dataset. That leads to a relatively
lousy context embedding for the disambiguation. This scoring distribution is
impacted by row number with DAGOBAH-SL mechanism, that is, the more
rows we have, the more balanced the scoring would be; ii) the other reason
is that 2T v2 is a synthetic dataset generated with types from a KG. Thus,
other column-wised semantic similarities are not obvious in this dataset. Hence,
we recommend that future synthetic datasets should consider the inclusion of
common themes from these tables to simulate other real-world use cases.

We introduce ShortTables for simulating the extreme cases where the very
limited number of rows does not allow existing systems to generate correct CTA
and CPA annotations. Bad CTA or CPA may propagate the error to the cell
annotations. Thus, we expected to have a more significant GP improvement for
ShortTables compared to T2D. However, from our evaluation, the contribution
of Radar Station is close in these two datasets (Max 0.03). We analyze that a
small number of rows can decrease the quality of type annotation and more likely
propagate error with type disambiguation: therefore, it provides more chances
for semantic disambiguation. At the same time, the limited number of rows also
limits the content of the context entity set that has been used for semantic disam-
biguation. We argue that these two effects cancel each other in this experiment.
We have implemented Radar Station on two other systems and evaluated its
performance with two Web table datasets. The result shown in Table 5 indicates
that Radar Station benefits to all input annotation systems.

512 J. Liu et al.

Analysis on Embeddings. Regarding the two families of embeddings (TransE
and RotatE are translational distance models, DistMult and ComplEx are
semantic matching models), the GP for embeddings from the same family
achieves similar results inside our trained embeddings. From the result of Cohen’s
kappa shown in Fig. 3, we observe that the output is similar for embeddings from
the same family. For example, the kappa value for TransE and RotatE is much
higher than TransE with other outputs (same for DistMult and ComplEx). This
similarity could also be seen in the precision shown in Table 4. We also observe
that translational distance models are generally better than semantic matching
models in our trained embeddings. That may be because we leverage geometric
distance inside Radar Station, which is compatible with the training strategy
of translational distance models. Globally, RotatE embeddings outperform all
other models for all datasets.

Tolerance. Relaxing the tolerance has for effect to include more candidate
entities and thus has the potential to increase the probability that the correct
candidate is in the candidate set. However, such an operation also puts more
noise into the candidate list. In Fig. 4, we illustrate how the tolerance influ-
ences the performance of the system on Limaye and T2D. It shows that relaxing
the tolerance with TransE and RotatE improves the quality of the annotation
(performance peak at t = 0.95 in Fig. 4). In our observation, largely relaxing the
tolerance may decrease the accuracy since more noise is included during the dis-
ambiguation. This is therefore a delicate tradeoff to generalize across datasets.

(a) Limaye dataset (b) T2D dataset

Fig. 4. The GP evaluation on Limaye and T2D with t from 0.7 to 1 based on
DAGOBAH-SL.

7 Conclusion and Future Work

In this paper, we analyze the current limitations of STI systems with relational
tables and we introduce Radar Station, a new disambiguation method that makes
use of pre-trained KG embeddings to strengthen the performance. We evaluate
the system with different embeddings methods and we prove that this optimiza-
tion can be beneficial. In the future, we aim to process more table types such

Radar Station 513

as entity tables or matrix tables for enhancing the coverage and robustness of
the system. We also seek to leverage language models to take more contextual
information into account. We finally aim to plug Radar Station on top of other
competitive STI systems.

Supplemental Material Statement. The source code for Radar Station is available
at https://github.com/Orange-OpenSource/radar-station. The RotatE Embed-
dings, TransE embeddings, DAGOBAH-SL scores, Ground Truth and other
required datasets are available from Zenodo at https://zenodo.org/record/
6522985 while the ComplEx and DistMult embeddings are available at https://
zenodo.org/record/6522921.

References

1. Abdelmageed, N., Schindler, S.: JenTab: matching tabular data to knowledge
graphs. In: Semantic Web Challenge on Tabular Data to Knowledge Graph Match-
ing (SemTab), pp. 40–49 (2020)

2. Bhagavatula, C.S., Noraset, T., Downey, D.: Methods for exploring and mining
tables on Wikipedia. In: ACM SIGKDD Workshop on Interactive Data Exploration
and Analytics, pp. 18–26 (2013)

3. Bhagavatula, C.S., Noraset, T., Downey, D.: TabEL: entity linking in web tables.
In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 425–441. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25007-6 25

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: International Conference on
Advances in Neural Information Processing Systems (NIPS), vol. 26 (2013)

5. Chabot, Y., Labbe, T., Liu, J., Troncy, R.: DAGOBAH: an end-to-end context-free
tabular data semantic annotation system. In: Semantic Web Challenge on Tabular
Data to Knowledge Graph Matching (SemTab), pp. 41–48 (2019)

6. Chen, S., et al.: LinkingPark: an integrated approach for semantic table interpreta-
tion. In: Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab) (2020)

7. Cohen, J.: Weighted kappa: nominal scale agreement provision for scaled disagree-
ment or partial credit. Psychol. Bull. 70(4), 213 (1968)

8. Cutrona, V., Bianchi, F., Jiménez-Ruiz, E., Palmonari, M.: Tough tables: carefully
evaluating entity linking for tabular data. In: Pan, J.Z., et al. (eds.) ISWC 2020.
LNCS, vol. 12507, pp. 328–343. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-62466-8 21

9. Cutrona, V., et al.: Results of SemTab 2021. In: Semantic Web Challenge on Tab-
ular Data to Knowledge Graph Matching (SemTab), pp. 1–12. CEUR Workshop
Proceedings (2022)

10. Deng, X., Sun, H., Lees, A., Wu, Y., Yu, C.: TURL: table understanding through
representation learning. arXiv:2006.14806 (2020)

11. Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M., Christophides, V.: Match-
ing web tables with knowledge base entities: from entity lookups to entity embed-
dings. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 260–277.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 16

https://github.com/Orange-OpenSource/radar-station
https://zenodo.org/record/6522985
https://zenodo.org/record/6522985
https://zenodo.org/record/6522921
https://zenodo.org/record/6522921
https://doi.org/10.1007/978-3-319-25007-6_25
https://doi.org/10.1007/978-3-030-62466-8_21
https://doi.org/10.1007/978-3-030-62466-8_21
http://arxiv.org/abs/2006.14806
https://doi.org/10.1007/978-3-319-68288-4_16

514 J. Liu et al.

12. Eslahi, Y., Bhardwaj, A., Rosso, P., Stockinger, K., Cudré-Mauroux, P.: Annotat-
ing web tables through knowledge bases: a context-based approach. In: 7th Swiss
Conference on Data Science (SDS), pp. 29–34. IEEE (2020)

13. Huynh, V.P., et al.: DAGOBAH: table and graph contexts for efficient seman-
tic annotation of tabular data. In: Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab) (2021)

14. Huynh, V.P., Liu, J., Chabot, Y., Labbé, T., Monnin, P., Troncy, R.: DAGOBAH:
enhanced scoring algorithms for scalable annotations of tabular data. In: Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) (2020)

15. Jenatton, R., Le Roux, N., Bordes, A., Obozinski, G.: A latent factor model for
highly multi-relational data. In: International Conference on Advances in Neural
Information Processing Systems (NIPS), pp. 3176–3184 (2012)

16. Jiménez-Ruiz, E., Hassanzadeh, O., Efthymiou, V., Chen, J., Srinivas, K.: SemTab
2019: resources to benchmark tabular data to knowledge graph matching systems.
In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 514–530. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-49461-2 30

17. Jiménez-Ruiz, E., Hassanzadeh, O., Efthymiou, V., Chen, J., Srinivas, K., Cutrona,
V.: Results of SemTab 2020. In: Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab), vol. 2775, pp. 1–8 (2020)

18. Lerer, A., et al.: Pytorch-biggraph: a large scale graph embedding system. In:
Conference on Machine Learning and Systems (MLSys), vol. 1, pp. 120–131 (2019)

19. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. Proc. VLDB Endow. 3(1–2), 1338–1347
(2010)

20. Liu, J., Chabot, Y., Troncy, R., Huynh, V.P., Labbé, T., Monnin, P.: From tabular
data to knowledge graphs: a survey of semantic table interpretation tasks and
methods. J. Web Semant. (2022), under revision

21. Nguyen, P., Yamada, I., Kertkeidkachorn, N., Ichise, R., Takeda, H.:
Mtab4wikidata at SemTab 2020: tabular data annotation with Wikidata. In:
Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab) (2020)

22. Oliveira, D., d’Aquin, M.: ADOG-annotating data with ontologies and graphs.
In: Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab) (2019)

23. Ringler, D., Paulheim, H.: One knowledge graph to rule them all? Analyzing
the differences between DBpedia, YAGO, Wikidata & co. In: Kern-Isberner, G.,
Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 366–372.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67190-1 33

24. Ritze, D., Bizer, C.: Matching web tables to DBpedia - a feature utility study. In:
International Conference on Extending Database Technology (EDBT), pp. 210–221
(2017)

25. Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML tables to DBpedia. In: 5th
International Conference on Web Intelligence, Mining and Semantics, pp. 1–6
(2015)

26. Sarthou-Camy, C., et al.: DAGOBAH UI: a new hope for semantic table interpre-
tation. In: 19th European Semantic Web Conference (ESWC), Poster and Demo
Track. Springer (2022). https://doi.org/10.1007/978-3-031-11609-4 20

27. Shigapov, R., Zumstein, P., Kamlah, J., Oberländer, L., Mechnich, J., Schumm,
I.: bbw: Matching CSV to Wikidata via meta-lookup. In: Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching (SemTab) (2020)

https://doi.org/10.1007/978-3-030-49461-2_30
https://doi.org/10.1007/978-3-319-67190-1_33
https://doi.org/10.1007/978-3-031-11609-4_20

Radar Station 515

28. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by
relational rotation in complex space. arXiv:1902.10197 (2019)

29. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: International Conference on Machine Learning
(ICML), pp. 2071–2080. PMLR (2016)

30. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

31. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations
for learning and inference in knowledge bases. arXiv:1412.6575 (2014)

32. Zhang, S., Balog, K.: Recommending related tables. arXiv:1907.03595 (2019)
33. Zhang, Z.: Effective and efficient semantic table interpretation using TableMiner+.

Semant. Web 8(6), 921–957 (2017)
34. Zhu, Z., Xu, S., Tang, J., Qu, M.: GraphVite: a high-performance CPU-GPU hybrid

system for node embedding. In: The World Wide Web Conference (WWW), pp.
2494–2504 (2019)

35. Zwicklbauer, S., Einsiedler, C., Granitzer, M., Seifert, C.: Towards disambiguating
web tables. In: International Semantic Web Conference (ISWC), Posters & Demos
Track, pp. 205–208 (2013)

http://arxiv.org/abs/1902.10197
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1907.03595

	Radar Station: Using KG Embeddings for Semantic Table Interpretation and Entity Disambiguation
	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 Heuristic-Based Approaches
	3.2 Candidate Disambiguation
	3.3 Usage of Graph Embeddings

	4 System Description
	4.1 Input Data Structure
	4.2 Context Entities Selection
	4.3 Ambiguity Detection
	4.4 Radar Station Disambiguation

	5 Experiments
	5.1 Knowledge Graph Embeddings
	5.2 Datasets

	6 Evaluation
	6.1 Evaluation Settings
	6.2 Analysis

	7 Conclusion and Future Work
	References

