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Abstract. Temporal knowledge graph (TKG) reasoning, which aims to
extrapolate missing facts in TKGs, is vital for many significant applica-
tions, such as event prediction. Previous studies have attempted to equip
entities and relations with temporal information in historical timestamps
and have achieved promising performance. While ignoring the likelihood
that future occurrences would occur simultaneously, they independently
forecast the missing data. However, there are complicated connections
between future concurrent events that might correlate with and influ-
ence one another. Therefore, we propose our Concurrent Reasoning
Network (CRNet) to leverage event concurrency in both historical and
future timestamps for TKG reasoning. Specifically, we select the top-
k candidate events for each missing event and construct a candidate
graph based on the candidate events of all missing events at the future
timestamp. The candidate graph connects missing facts by sharing the
same entities. Furthermore, we employ a novel relational graph attention
network to represent the interactions of candidate events. We evaluate
our proposal by the entity prediction task on three well-known pub-
lic event-based TKG datasets. Extensive experimental results show that
our CRNet complete future missing facts with a 15–20% improvement
over MRR. (The source code is available at https://github.com/shichao-
wang/CRNet-ISWC2022.)

Keywords: Temporal knowledge graph · Temporal reasoning ·
Concurrent events

1 Introduction

Each fact in the TKGs is a quadruple (subject, relation, object, timestamp).
Grouping quadruples by timestamps results in a sequence of KGs. Nodes rep-
resent entities in the real world, and the labeled edges represent related events
between entities. TKG reasoning attempts to predict missing future facts like
(s, r,?, t). Reasoning over TKGs forecasts emerging events, which is helpful for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 516–533, 2022.
https://doi.org/10.1007/978-3-031-19433-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19433-7_30&domain=pdf
https://github.com/shichao-wang/CRNet-ISWC2022
https://github.com/shichao-wang/CRNet-ISWC2022
https://doi.org/10.1007/978-3-031-19433-7_30


CRNet: Modeling Concurrent Events over Temporal Knowledge Graph 517

Fig. 1. An illustration of temporal reasoning over TKGs. The concurrent events exist
in history and the future.

many real-world applications, including product recommendation [32] and event
prediction [13,28].

On the one hand, historical events happened concurrently and are relevant
to TKG reasoning. As shown in Fig. 1, for the missing events (Farmworker,
Demonstrate, ?) a good TKG reasoning method should learn from previous con-
current events (Government, Make statement, Police) and (Police Make state-
ment, Farmworker). Previous studies, such as RE-Net [13] and CyGNet [40],
attempt to retrieve query-related information from historical events. Some meth-
ods such as RE-GCN [19], CEN [17] and EvoKG [24], employ recurrent neural
networks (RNNs) to learn a dynamic representation from historical KGs. These
methods adopt relational graph convolution networks (RGCNs) to learn the
concurrent events at historical timestamps. Limited by the traditional RGCN
diagram, which regards the head and tail entities separately, they cannot exploit
the complete semantics of event triplets or leverage the different importance of
neighbors.

On the other hand, there are also complex dependencies among the concur-
rent events at future timestamps [21,39], which all the previous studies neglect.
As shown in Fig. 1, the prediction results will influence each other. For the query
(Government, Provide aid, ?), a possible object would be Farm worker, since
there are two events (Farmworker, Request, Government) and (Farmworker,
Request Aid, Government) at the previous timestamps. However, when there is
the event (Farmworker, Demonstrate, Government) at future timestamp. The
government would not provide aid to farmworkers somehow, since they are antag-
onistic to each other. Thus, combining the concurrent events at future timestamp
is suitable for real world application and enables predicting missing events.

In this paper, we propose the Concurrent Resoning Network (CRNet) for
TKG reasoning, which exploits the concurrent events at historical and future
timestamps. For the historical concurrent events, we develop a novel relational
graph attention network, namely EventRGAT, which passes the complete event
message, rather than nodes or edges, to neighbors and aggregates them adap-
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tively. We also propose a two-stage framework to model the interactions among
future concurrent events. Using true events at future timestamps directly will
result in information leakage and is not suitable for real-world application, so
we first collect the top-k candidates for every missing event at future timestamp
and build the candidate events graph together. Nodes and edges in the candi-
date graph are the entities and the candidate events. Then, we employ our novel
RGAT to encode the interaction among the candidate events and enhance the
representations with concurrent dependencies. In summary, our contributions
are in three folds:

– We formulate and address the problem of concurrent events for the TKG
reasoning in historical and future timestamps, which is fit with the concurrent
nature of events and suitable for real world application.

– For the historical concurrent events, we develop EventRGAT to aggregate
related events adaptively. For future concurrent events, we propose a two-
stage framework, which builds a candidate graph for concurrent missing
events, to capture their interactions.

– Extensive experimental results demonstrate that our CRNet achieves signifi-
cant improvement (15%–20% on MRR) on event-based TKG benchmarks. A
thorough case study is carried out to verify the effectiveness of our proposal.

2 Related Works

This section first discusses two the difference between reasoning over temporal
knowledge graph and the static knowledge graph. Then, we review the temporal
knowledge graph reasoning under two different settings, e.g., interpolative and
extrapolative.

2.1 Static Knowledge Graph Reasoning

The static knowledge graph reasoning aims to predict the missing facts in the
KG. Recent researches focus on learning the low-dimensional representation for
entity and relations in KGs to solve the problem. The representation learn-
ing methods can be categorized into translational and semantic-matching. The
translational models, such as TransE [1] and its variants [20,29,34], measure
the distance between the head and tail entities in the subspace translated by
the relation. RESCAL [23], DistMult [37], NTN [26] and ConvE [5] are seman-
tic matching methods, which measure the plausibility of facts by matching the
semantics of entities and relations in the vector space. Graph neural networks
(GNNs) have also extended for the relational-aware representation learning on
KGs, such as R-GCN [30], HAN [33]. However, these methods are developed
for static KGs, and they are not capable of modeling the dynamic evolutional
patterns in TKGs directly.
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Table 1. Important notations and their descriptions.

Notations Description

Gt, V, R, Et Event knowledge graph at timestamp t, and its node set, relation set
and events set

hi hj , rk Embedding vector for Entity ei, Entity ej , and Relation rk

ht Embedding vector for Entity e and the matrix at timestamp t

Ht, R Embedding matrix for entities at timestamp t and relations
s, r, o The subject, relation, and object of a event
st, rt, ot The subject, relation, and object embedding vector at timestamp t

Qt, Qq The missing events sets at timestamp t and q

2.2 Temporal Knowledge Graph Reasoning

There are two settings for reasoning over TKGs, interpolation, and extrapolation.
The interpolative TKG reasoning task assumes that there are missing facts in
the historical timestamps. It attempts to completing the missing facts through
contextual KGs [6,7,11,12,14,35,36]. For example, Jiang et al. [12] adopt the
temporal order of the happening time of facts to constrain the transformation
between time-sensitive relations. TimePlex [11] embeds the entities, relations,
and timestamps into a uniform compatible space. RTFE [36] treats the sequence
of graphs as a Markov chain and tracks the state transition recursively. These
methods cannot obtain the representations for entities and relations at future
timestamps. Thus, they are not able to tackle the extrapolative TKG reasoning.

On the contrary, the extrapolative reasoning, which this paper focuses on,
attempts to predict the facts at future timestamps through historical KGs. These
methods can be categorized into two: Query-specific methods and evolution rep-
resentation learning methods [17]. The query-specific methods retrieve contex-
tual information from the question, such as subject and relation, from the histor-
ical KGs. For example, RE-Net [13] aggregates the historical neighbors for the
queried subject and predicts its future interactions. CyGNet [40] utilizes the copy
mechanism to collect the object distribution given a specific subject and relation.
xERTE [8] build the sub-graph from the historical facts for the query. TITer [27]
and CluSTeR [18] employ the reinforcement learning to find query-related paths.
The evolution representation learning methods update the embedding for every
entity and relation based on the historical KGs. RE-GCN [19] learns the evolu-
tion representation at a fixed length. CEN [17] extends it for the dynamic lengths.
DynamicGCN [3] and Glean [4] enrich the representation with text features.

3 Problem Formulation and Notations

A temporal knowledge graph (TKG) G = {G1, G2, . . . , Gt, . . . } is a multi-
relational directed graph. Gt = (V,R, Et) denotes a set of events happened
at time t, where V is the set of entities, R is the set of relations (a.k.a.
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Fig. 2. The overview of our proposed CRNet model architecture. CRNet consists of
two parts, e.g., the historical concurrent evolution module and the future concurrent
prediction module. Edges in different colors denote different events between entities.

events) and Et is the set of facts at timestamp t. A fact in TKG can be rep-
resented by a quadruple (s, r, o, t), where s, o ∈ V, r ∈ R represent the sub-
ject, object, and relation respectively. The quadruple describes the subject s
interacts with the object o with an event of r at time t. For every quadru-
ple in the testing set, the extrapolative TKG reasoning task aims to complete
the missing facts (s, r, ?, tq) and (?, r, o, tq) with a sequence of historical KGs
Gq−m:q−1 = {Gq−m, Gq−m+1, . . . , Gq−1}. Taking the object prediction as an
example, the conditional probability of an object given the subject s, relation r,
and history Gq−m:q−1 is p(o|s, r,Gq−m:q−1). We denote it as pi(o|s, r, q) in the
rest of paper.

In this paper, we conduct the concurrent reasoning over TKGs. Comparing
with traditional TKG reasoning our concurrent reasoning diagram considers the
concurrent missing events at future timestamp. We denote all the missing facts at
future timestamp tq as Qq = {(s, r)|(s, r, o) ∈ Gq}. The conditional probability
for object o given the subject s and relation r is p(o|s, r,Gq−m:q−1, Qq). We
denote it as pc(o|s, r, q) in the rest of paper.

The important mathematical notations are described in Table 1

4 Methodology

This section introduces our proposal, CRNet. Figure 2 depicts the overview of
our CRNet, which consists of the historical concurrent evolution module and
the future concurrent prediction module. In the historical concurrent evolution
module, the evolution embeddings for all entities are learned from historical KGs.
In the future concurrent prediction module, we collect the missing facts to build
a candidate graph and conduct concurrent prediction.

4.1 Historical Concurrent Events Evolution

To capture the concurrent interactions for entities, we use the historical KG Gt

to update the entity embeddings. Give an entity representation hi at timestamp



CRNet: Modeling Concurrent Events over Temporal Knowledge Graph 521

t, the adaptive triplet message passing module aims to collect the structural
interactions h′

i for it. To obtain the triplet message, we perform a linear trans-
formation over the concatenated triplet (ei, rk, ej) embedding [22].

tijk = W1 [hi||rk||hj ] (1)

where tijk is the representation for the event triplet (ei, rk, ej). [·||·] is the con-
catenation operation. hi and hj are the embeddings for ei and ej , and rk for
the relation rk respectively. W1 ∈ R

h×3h is the learnable parameter matrix. To
learn the different importance αijk for message aggregation, we first adopt a lin-
ear transformation parameterized by a vector w2 followed by a LeackyReLU to
compute the absolute score for every message, which is similar to the architecture
proposed in GAT [31].

sijk = LeackyReLU (w2tijk) (2)

To get the relative attention value for aggregation, we apply softmax over sijk
shown in Eq. (2).

αijk = softmaxjk(sijk)

=
exp (sijk)∑

n∈Ni

∑
r∈Ri,n

exp (sinr)
(3)

where Ni is the neighborhood node set for entity ei, Ri,n represents the con-
nected relation sets for entity ei and en. The neighbor message is finally adap-
tively aggregated following Eq. (4).

hl+1
i = σ

⎛

⎝
∑

j∈Ni

∑

k∈Ri,j

αl
ijkt

l
ijk + W l

3h
l
i

⎞

⎠ (4)

where hl
i is the embedding for ei learned at lth layer. σ is the RReLU [15]

activation function. As suggested in GAT [31], we also employ the multi-head
mechanism to collect multiple information from neighborhoods and stabilize the
learning process. We employ M independent attention heads to calculate the
embeddings from M different subspaces. We average the embeddings from sub-
spaces resulting in the final representation. Note that, there are no parameters
shared across heads or layers.

The final interaction information for entity ei is the aggregated results after
L layers, h′

i = hL
i . We treat L and M as empirical hyper-parameters. We denote

relational graph attention network above as H ′ = EventRGAT(G,H,R), where
H,R is the embedding matrix for all entities and relations respectively. We will
employ it to model the concurrent events again at the future timestamp.

Temporal Evolution. After gathering the interaction information in a specific
timestamp t. We need to update the representation for the next timestamp.
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Fig. 3. The architecture of future concurrent events prediction module. There are three
concurrent missing events to predict, namely (e1, r1), (e2, r2), (e3, r3). For each missing
event, we select top-k (k = 3) candidates to build the candidate graph CQ. The final
predict score is an average of pc and pi with the balance term λ.

We denote ht and h′
t as the entity embedding and interaction information at

timestamp t. We employ the gate mechanism to update the entity embedding.

u = σ (W3 [h′
t||ht] + b) (5)

ht+1 = u � h′
t + (1 − u) � ht (6)

where σ(·) is the sigmoid function which controls the gate value in vector u ∈ R
d

ranges 0 to 1. � is the vector element-wise dot operation.

4.2 Future Concurrent Events Prediction

This subsection introduces our two-stage concurrent prediction framework Fig. 3.
We first use ConvTransE [25] to predict all entities’ probability score pi.

pi (o|s, r, t) = otConvTransE1(st, rt) (7)

where st, rt, ot are the corresponding subject, relation and object embedding
vectors at timestamp t respectively.

ConvTransE(s, r) = f (vec(M(s, r))W4) (8)

where M(s, r) are aligned output vectors from the convolution kernels. vec(·)
converts the feature map matrix into a vector. f(·) denotes the ReLU activation
function here.

Candidate Graph Construction. Qq is the set of concurrent missing events
at future timestamp q. For every (si, ri) ∈ Qq, we select k candidate triplets
with highest probability score pi(o|s, r, t). We then union all queries and their
k candidates to build the candidate graph CQ = (V,R, EQ), where EQ is the
candidate event triplet set for all queries. Thus, it results in |Qq| × k edges in
the candidate graph, where |Qq| is the number of missing facts.
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Algorithm 1. Batch training procedure of CRNet
Input: Historical knowledge graph sequence {Gt−m, ..., Gt−2, Gt−1},
Concurrent missing facts at future timestamp t Qt

Output: Reasoning score for each query in Qt

1: Generate Evolutional Embedding from historical KGs. Eq. (4) and (6).
2: for each (s, r) ∈ Qt do
3: Calculate the prediction score pi(o|s, r, t) without concurrent context Eq. (7).
4: Generate top-k candidate events. Ek

s,r with the k highest prediction score.
5: Add Ek

s,r to candidate graph CQ.
6: end for
7: Enrich entity embeddings with concurrent events based on CQ Eq. (9).
8: Calculate the predict score with concurrent context pc(o|s, r, t) Eq. (10).
9: Predict missing object by jointing two prediction scores. Eq. (11).

10: Update model parameters by minimizing cross-entropy loss. Eq. (12).

Concurrent Events Prediction. After the candidate graph construction, we
employ our novel relational graph attention network EventRGAT to model the
interactions among candidate events. The entity representation after future con-
current interactions Ĥ follows:

Ĥt = EventRGAT(CQ,Ht,R) (9)

The probability score for entities with concurrent events pc can be calculated as
follows:

pc (o|s, r, t) = ĤtConvTransE2(ŝt, rt) (10)

where ŝ is the enhanced entity embedding for subject s. The final probability
score is a combination of pi and pc with a balance term λ.

p(o|s, r, t) = λ · pi(o|s, r, t) + (1 − λ) · pc(o|s, r, t) (11)

The entity prediction task can be seen as a multi-label classification problem.
We employ the cross-entropy loss at future KG Gq:

L =
∑

(s,r,o)∈Gq

− log p(o|s, r, t) (12)

The training procedure for a batch of data is detailed in Algorithm 1. The
training procedure will stop with the early stopping strategy with patience of 5.

5 Experiments

This section demonstrates the effectiveness of our proposal on the TKG rea-
soning. We first declare our experimental settings in detail, including datasets,
baseline methods and evaluation metrics. Secondly, we compare the performance
between CRNet and baseline methods on the link prediction and discussed the
experimental results. After that, we analyze the influence of important hyper-
parameters in CRNet. Finally, we carry out a case study to explain the effec-
tiveness intrinsically.
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Table 2. Statistics of temporal knowledge graph (TKG) datasets.

Dataset # Train # Valid # Test # Nodes # Relations Granularity

ICEWS18 746,036 91,990 99,090 23,033 256 24 h

ICEWS14 74,845 8,514 7,371 6,869 230 24 h

GDELT 1,734,399 238,765 305,241 7,691 240 15min

5.1 Experimental Setup

Datasets. We use three real-word event-based TKGs that have been widely used
in previous studies: ICEWS18 [2], ICEWS14 [28] and GDELT [16]. Datasets
are divided into training (80%), validation (10%) and testing (10%) sets by
timestamps following [13]. ICEWS and GDELT are event-based TKGs. Detailed
statistics of the aforementioned datasets are listed in Table 2.

Baselines. We compare our proposed method with the following state-of-the-
art reasoning methods for temporal knowledge graphs, including

– RE-Net Jin et al. [13] propose an auto-regressive architecture for predicting
future missing facts.

– xTERTE Han et al. [8] propose a temporal relational attention network and a
reverse representation update strategy to guide the query-specific sub-graph
extraction.

– CyGNet Zhu et al. [40] employ a time-aware copy-generation mechanism to
identify facts with repetition.

– HIP He et al. [10] develop the historical information passing network to pass
information from temporal, structural and repetitive perspectives.

– TANGO Han et al. [9] extends the idea of neural ordinary differential equa-
tions (ODEs). TANGO encodes both temporal and structural information
into dynamic embeddings.

– TITer Sun et al. [27] define an abstract agent to search the answer from
historical KGs. They also design a Dirichlet distribution-based time-shaped
reward for reinforcement learning.

– CluSTeR Li et al. [18] propose a clue searching and temporal reasoning two-
stage framework to predict future facts with reinforcement learning.

– RE-GCN Li et al. [19] employ a recurrent architecture to learn the evolutional
representations of entities and relations following the KG sequence.

– EvoKG Park et al. [24] joint learns the time prediction task and link prediction
task in an effective framework.

– CEN Li et al. [17] employ a length-aware decoder and the curriculum learning
strategy to mine the complex evolutional pattern from length diversity and
time-variability aspects.

Evaluation Metrics. We evaluate our model on TKG reasoning, which is a
link prediction task at future timestamps. We adopt Mean Reciprocal Rank
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(MRR), Hits@1, Hits@3 Hits@10 as our evaluation metrics. Note that, the same
as previous works, we add reciprocal relation for every quadruple in the dataset,
i.e., we add (o, r−1, s, t) for every (s, r, o, t). For each quadruple (s, r, o, t) in the
testing set, we predict two facts, e.g.(s, r, ?, t) and (o, r−1, ?, t). We also employ
the time-aware filtered setting which removes all the valid facts that appear
in the ranking list of time-specific corrupted facts. Taking the query (s, r, ?, t1)
with the answer o1 and two ground truths (s, r, o2, t1), (s, r, o3, t2) as an example,
under the time-aware setting, we consider the (s, r, o2, t1) as the corrupted fact
and remove it from the ranking list.

5.2 Implementation Details

There are several empirical hyperparameters in our proposal. For all the entity
and relation embeddings, their dimension d is set to 200. We also constrain
the embedding vector with L2 normalization [38]. The number of layers of the
relational graph attention network L is set to 2. The number of attention head
M is set to 4. We fix the length of historical length m to 3 over all datasets.
We adopt the Adam optimizer with 1e−3 learning rate and 1e−4 weight decay
to optimize the model parameters. We employ the grid search algorithm to find
the optimal number of candidate k and the balance term λ from the validation
set according to MRR. The optimal k are 20,35,10 for ICEWS18, ICEWS14 and
GDELT, respectively. The optimal balance term λ are 0.5,0.5,0.9 for ICEWS18,
ICEWS14 and GDELT, respectively. We analyze their influence in Sect. 5.4. We
use all the missing facts available to conduct the concurrent prediction. We also
study its influence in Sect. 5.4.

5.3 Performance Comparison

Table 3 reports the entity prediction results of CRNet and baseline methods on
the three event-based TKG datasets. The first group of baselines are query-
specific methods, they search context for queries from historical timestamps.
They fail to capture the global environment for event evolution, so they obtain
a relatively poor performance. The second group consists of methods using rein-
forcement learning. They design an abstract agent to ‘walk’ through historical
timestamps. The agent usually starts with a query, but ‘walks’ with a specific
strategy, so they will not limit themselves by the query and obtain a better per-
formance. However, reinforcement learning methods require a large number of
computational resources and can not fit with large datasets, such as GDELT.
The last group of baselines are evolution representation learning methods, which
update entities or relations following historical timestamps. They learn entities’
interactions from historical concurrent events but fail to capture the concurrent
events at the future timestamp. As we can observe, our CRNet outperforms
the baselines of all metrics on ICEWS18 and GDELT datasets and achieves an
improvement of 14.62% and 19.57% on MRR, respectively. On the ICEWS14,
CRNet obtains the best performance on most of the metrics except for Hits@10.
CluSTeR searches explicit clues from historical KGs, but is unable to specify
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Table 3. The performance of entity prediction with time-aware filtered metrics. Some
methods do not report their performance under the time-aware filter setting, we use
their public implementation to generate results and denote them with †.

ICEWS18 ICEWS14 GDELT
Method MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-Net 28.81 19.05 32.44 47.51 36.93 26.83 39.51 54.78 19.60 12.03 20.56 33.89
CyGNet 24.93 15.90 28.28 42.61 35.05 25.73 39.01 53.55 †18.79 †11.83 †19.84 †32.31
TANGO 28.97 19.51 32.61 47.51 26.25 17.30 29.07 44.18 – – – –
HIP †29.20 †20.12 †32.27 †47.60 †40.84 †31.60 †40.54 †56.02 †20.08 †12.78 †20.15 †33.62
xERTE 29.31 21.03 33.51 46.48 40.79 32.06 45.67 57.30 – – – –
TITer 29.98 22.05 33.46 44.83 41.73 32.28 46.46 58.44 – – – –
CluSTeR 32.30 20.60 – 55.90 46.00 33.80 – 71.20 18.30 11.60 – 31.90
EvoKG 29.28 – 33.94 50.09 27.18 – 30.84 47.76 19.28 – 20.55 34.44
RE-GCN 30.58 21.01 34.34 48.75 40.39 30.66 44.96 59.21 †19.72 †12.46 †20.99 †33.92
CEN 31.50 21.70 35.44 50.59 42.20 32.08 47.46 61.31 †21.16 †13.43 †22.71 †36.38
CRNet 37.81 26.12 43.10 61.01 48.37 38.21 53.79 67.79 25.32 15.39 27.82 44.07

the most significant clue, thus it achieves high Hits@10 but ordinary Hits@1 or
MRR.

5.4 Ablation Studies

To investigate the influence of concurrent event prediction and verify the robust-
ness of our proposal, we conduct several ablation studies for CRNet. We first
analyze the influence of important hyperparameters in CRNet, e.g. k and λ.
After that, we study the influence of the number of concurrent missing facts.

Influence of k Candidates. k is the number of candidate selected for each
missing fact. Figure 4 demonstrates the influence of k ranges from 1 to 50. The
metric values reported in the line chart are collected from validation set. As
we can observe, for the k ranges from 1 to 10, the performance increase with
higher k. The larger k results in more edges in the candidate graph and will have
more interactions among candidates. On the other hand, the larger k will more
likely to retrieve correct prediction and rank better. However, the larger k does
not mean better performance. More candidate facts will lead to a more complex
environment for concurrent prediction and decrease the predicting performance.
Thus, every datasets have their own optimal k. We choose the optimal k based
on the MRR, e.g., 20 for ICEWS18, 35 for ICEWS14 and 10 for GDELT. We
think the optimal k is relevant to the scale of dataset, since the GDELT and the
ICEWS14 are the largest and smallest dataset, respectively.

Influence of the Balance Term λ. λ is the balance term between pi(o|s, r, t)
and pc(o|s, r, t). The larger λ lead our CRNet to predict missing facts more
on concurrent context pc(o|s, r, t). We evaluate the effectiveness with λ in a
range of 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0. λ = 0.0 and λ = 1.0 are two spe-
cial cases, in which CRNet predict the missing facts purly by pi(o|s, r, t) or
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Fig. 4. The influence of the number of candidates k on three event-based TKG datasets.
The black, red, blue, and green line represent MRR, Hits@1, Hits@3, and Hits@10.
(Color figure online)

Fig. 5. Influence of balance term λ on three event-based datasets. The black, red, blue,
and green line represent MRR, Hits@1, Hits@3, and Hits@10. (Color figure online)

pc(o|s, r, t). Figure 5 illustrates the influence of different λ. As we can observe
from Fig. 5, ICEWS14, ICEWS18 and GDELT have their own optimal λ. Since
the ICEW14 and ICEWS18 share similar collecting procedure, they have the
same λ = 0.5. GDELT obtain the best performance with λ = 0.9. The metric
values with λ = 0.0 and λ = 1.0 obtain a relatively poor performance comparing
with any joint prediction model, which means our proposed concurrent context
pc(o|s, r, t) complement with pi(o|s, r, t) well. However, the pure predict metrics
of pc(o|s, r, t) are worse than pi(o|s, r, t). This means that our candidate graph
not only create the interactions between future missing facts, but also introduce
some distractive information. We leave this problem in our future work.

Influence of the Number of Concurrent Missing Facts. As we introduced
in Sect. 4.2, we build our candidate sub-graph from the concurrent missing fact
set Qq. Therefore, the number of missing facts affects the scale of candidate sub-
graph, and influence the performance further. Since the number of the concurrent
missing facts varies from datasets and future timestamps, we split the missing
facts into several partitions, i.g., 1, 2, 3, 4 and 5, to analysis how the number of
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Fig. 6. MRR and Hit@3 performance with different ratio of concurrent missing facts
at ICEWS18, ICEWS14 and GDELT datasets. All the metrics are obtained from vali-
dation set.

concurrent missing facts affect the performance. Figure 6 illustrates the perfor-
mance difference from different ratio of concurrent missing facts. In ICEWS18
and ICEWS14 datasets, all metric values drop with smaller scale of concurrent
missing facts significantly. On the contrary, the performance of different num-
ber of missing facts are almost the same and the best performance is obtained
with 33% missing facts in GDELT dataset. This is because the GDELT has a
relatively low performance and has more concurrent missing facts comparing
with the other datasets. Thus, GDELT samples can not benefit from concurrent
missing facts well.

5.5 Case Studies

To evaluate the effectiveness of concurrent missing events, we visualize 4 typical
cases in the testing set of ICEWS14 in Fig. 7. More concretely, we group the
missing events in the same topic and compare the prediction results of CRNet
with RE-GCN, which can not leverage the concurrent context.

In case 1, there are two highly related missing events, (China, Express intent
to meet, ?) and (Japan Express intent to meet, ?). The traditional methods will
easily predict the events with object South Korea, because there are two related
events, such as (South Korea, Make statement, China) and (South Korea, Make
statement, Japan) events in historical context. The Express intent to meet is seen
as a evolution result of Make statement. However, the Express intent to meet
event usually happens to each other. Our CRNet can discover the relationship
between concurrent events (China Express intent to meet, ?) and (Japan Express
intent to meet, ?), and make correct predictions.

For case 2, there are two opposite events Make visit and Host visit, which
usually happen concurrently at the same timestamp. In the historical context,
Envoy (US) makes a visit to the South Korea, and the South Korea also host
a visit for Envoy (US) as a response. When it comes to the missing events
(South Korea, Host visit, ?) at a future timestamp, previous methods will fill
the object with Envoy (US) according to the historical context. On the contrary,
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Fig. 7. Four typical cases in the testing set of ICEWS14.

our CRNet considers the concurrent future event, such as (North Korea, Make
visit, ?), and predict them jointly with concurrent context. With the help of
concurrent context (North Korea, Make vist, South Korea), CRNet completes
the missing event (North Korea, Make visit, ?) with the object North Korea.

The latter two cases are two emergencies, in which historical context cannot
provide enough information to model the actors’ behavior concretely.

In case 3, there is a conflict between the protester and the police. RE-GCN
can predict the events between the police and the protester by transferring knowl-
edge learned from previous conflicts. However there is a new participant Student
in the happening conflict (obtained from (Student, Express intent to yield, ?).
RE-GCN limits itself with the participant of Police and Protester and cannot
leverage the relationship between Student and Protester, which exists in the
concurrent context.

In case 4, previous studies intend to predict the missing event (Citizen, Appeal
economic aid, ?) with Government, since Citizen usually reach out to Gov-
ernment for help according to previous events. However, the Citizen and the
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Government are in poor relationship which can be learned from the concurrent
events. The Citizen are not likely to request economic aid from the Government.

In summary, concurrent missing events at future timestamps are important
for TKG reasoning. Our proposal can mine the relationship between concurrent
missing events and complete missing events more accurately.

6 Conclusion

We formulate and address the problem of concurrent events int TKG reasoning
task in historical and future timestamps. Our proposal, CRNet, is consisted of
two parts. For the historical concurrent events, we propose a novel relational
graph attention network, EventRGAT, to model the interactions among events
in a specific timestamp. For the future concurrent events, we propose a two-
stage frame work, in which we build a candidate graph and model the interac-
tions among future candidate events. Extensive experiments on three event-based
TKG benchmarks demostrate the effectiveness of our CRNet. We also investi-
gate into cases to study the influence of concurrent missing facts. The results
indicate the concurrent context at future timestamp is informative for predicting
missing events.

Supplemental Material Statement: Source code for our proposal is attached with
the submission on EasyChair and will be available to public after acceptance.
The datasets we used is adopt from the repository of RE-GCN. and have been
submitted in the supplemental material. The raw data used to generate Table 3,
Fig. 4, Fig. 5, and Fig. 6 are attached on EasyChair.
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