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Abstract. Convolutional neural networks (CNNs) classify images by
learning intermediate representations of the input throughout many lay-
ers. In recent work, latent representations of CNNs have been aligned
with semantic concepts. However, for generating such alignments, the
majority of existing methods predominantly rely on large amounts of
labeled data, which is hard to acquire in practice. In this work, we address
this limitation by presenting a framework for mapping hidden units from
CNNs to semantic attributes of classes extracted from external common-
sense knowledge repositories. We empirically demonstrate the effective-
ness of our framework on copy-paste adversarial image classification and
generalized zero-shot learning tasks.
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1 Introduction

Convolutional neural networks (CNNs) are well-known for their capacity to learn
different powerful representations of the input in their successive layers. It is
also well-known that they process images in a way that is not always intuitive
to humans [11]. The lack of interpretability of CNNs is clearly undesirable, espe-
cially in safety-critical applications such as medical diagnosis or autonomous
driving. This has led to an increased interest in methods that make the behavior
of a trained CNN more interpretable by trying to assign human-understandable
concepts (e.g., face) to the neurons in the intermediate layers, often without
explicit supervision [2,6,16,18,23,29].

An important class of methods [2,16,25] proposes to align neurons with class
attributes by using images in which segments are labeled. More specifically, one
tries to find out which neurons are activated by particular image segments and, in
that manner, associate these neurons with the label of the segment. For instance,
if, over multiple images, a particular neuron tends to be active for the image
segments labeled with table, one could argue that this neuron recognizes tables,
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Fig. 1. The goal of our work is to assign meaning to neurons using semantic properties
of classes from a knowledge graph.

and neurons in later layers essentially use this high-level information to decide
whether the image shows, e.g., an office. However, an important limitation of
such methods is that during training they require fine-grained semantic labels of
the images that are often not readily available and can be expensive to construct.

In this paper, we provide an alternative. Instead of using semantically labeled
images, we assume that external knowledge extracted from a knowledge graph
(KG) is available that contains symbolic descriptions of objects. Extensive KGs
of this kind exist. For example, ConceptNet [26] or WebChild [27] store seman-
tic (including visual) information about concepts (e.g., offices contain tables,
kitchens contain ovens, etc.) acquired using crowd sourcing or information
extraction from the Web. We develop methods that exploit such KGs by linking
the class label of images to typical visible attributes of this class, and then trying
to correlate neuron activation with these attributes. For example, if a particular
neuron tends to be active for pictures of offices and kitchens, but not for pictures
of bathrooms, and the KG states that offices and kitchens tend to contain tables
while bathrooms do not, then this may be an indication that the neuron reflects
the presence of a table (see Fig. 1).

We demonstrate experimentally that the methods we propose successfully
interpret neurons to the extent that they enable zero-shot learning of new classes
with comparable performance to existing methods, but with the advantage of
interpreting neurons in human-understandable terms. In the zero-shot learning
setting, a model is expected to classify images from classes it has never encoun-
tered during training. Earlier works in this direction that likewise make use of
external knowledge about classes [17,20] propose to exploit such knowledge dur-
ing training. While natural, these methods typically assume that prior to train-
ing, the knowledge of both seen and unseen classes is available. This implies
that whenever the source of knowledge (e.g., KG) is updated with information
about new unseen classes, training needs to be done completely from scratch,
which might be undesirable. Removing knowledge about unseen classes during
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training makes the respective methods less effective (see Sect. 5). In contrast,
our approach is advantageous in that we require the knowledge about unseen
classes to be present in the KG only at the inference phase.

Our main contributions are summarized as follows:

– We propose a framework for mapping neurons in a fully connected layer of a
CNN to attributes of classes from an external knowledge graph.

– On the task of copy-paste adversarial classification [16], we show that KGs
indeed contain important semantic attributes of classes, which are helpful for
CNNs.

– We experimentally demonstrate the usefulness of our framework for zero-
shot learning and show how it can be effectively exploited for retrieving class
predictions using reasoning over multiple networks.

2 Preliminaries

Image Classification CNN. Assuming a set of object classes C, for a given
(RGB) image I : Ω → R

3, where Ω denotes the pixel space, we consider a func-
tion f : (Ω → R

3) → C for a parameter vector w. The function f , providing
image classification, is defined as an L-layer convolutional neural network (CNN),
namely f(I) = arg maxk∈C (softmax(fL ◦ · · · ◦ f2 ◦ f1(I))k), where fl defines the
lth layer of the network.

Knowledge Graphs. We will assume a knowledge graph (KG) encoding rela-
tions between object classes and attributes. Let V and P denote a set of
entities (a.k.a. constants) and so-called predicates, respectively. A KG G ⊆
V × P × V represents collections of factual information encoded by triplets
〈subject , predicate, object〉. More formally, G = {〈s, p, o〉 | s, o ∈ V and p ∈ P}1.
In this work, we focus on commonsense KGs (CSKG), that is, KGs that describe
visual and physical properties of object classes (e.g., 〈bathroom, has, bath〉,
〈kitchen, has, table〉). Examples of such knowledge graphs include, e.g., Concept-
Net [26] or WebChild [27].
1 Alternatively, a KG G = (V, {Ep ⊆ V × V}p∈P) can be viewed as a directed super-

graph (i.e. a composition of directed graphs Gp = (V, Ep), ∀p ∈ P, where the edges
are labeled by the predicates p.
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Fig. 3. Illustration of neuron-attribute alignments, where dashed lines show correla-
tions between items in D. (a), (b) present invalid alignments; (c), (d) reflect desirable
alignments.

Association Rules. Association rules are widely used in the context of data
mining. We will use association rules to model relations between neurons and
attributes. First, we define a transaction database D = {(i,X ) | i ∈ U and X ⊆
I}, where I stands for a set of items, and U is a set of IDs. A transaction (i,X )
has a (unique) ID i and X ⊆ I denoting an itemset. Furthermore, we introduce
the support of an itemset X in a given transaction database D, which is the
frequency of transactions in D containing the itemset X :

supp(X ) = |{(i,X ′) ∈ D | X ⊆ X ′)}| / |D| .

We consider bi-directional association rules, which are expressions of the
form X ⇔ Y, where X ,Y ⊆ I. Association rules can be ranked relying on
certain interestingness metrics [1]. In this work, we focus on Jaccard index (a.k.a.
intersection over union), which for a given association rule X ⇔ Y computes the
ratio of co-occurrences to all occurrences of X and Y in the transaction dataset:2

J(X ⇔ Y) =
supp(X ∪ Y)

supp(X ) + supp(Y) − supp(X ∪ Y)
. (1)

3 Generating Neuron-Attribute Alignments

Our goal is to interpret neurons’ behavior3 in human-interpretable terms. In this
paper, we consider image classification as an application. In contrast to existing
methods [2,16], we aim at developing a framework that can be qualitatively and
quantitatively evaluated and that is not limited by the availability of semantically
labeled data.

2 We also write J(X ,Y) for conciseness.
3 A neuron can also be understood as an element of the vector of activation output

for a given layer.
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We propose to interpret neurons’ behavior in terms of the semantic properties
(a.k.a. attributes, encoded by a set A) from pre-constructed KGs, which store
human knowledge about classes from C. To this end, we aim at answering the
following key questions:

Q1. Do the extracted alignments comply with the behavior of the CNN from
which they were extracted?

Q2. Do networks learn in terms of attributes defined by the knowledge graph?
Q3. Beyond explainability, how can we utilize the extracted explanations?

Framework Overview. First, we present our framework, depicted in Fig. 2,
for aligning individual neurons with high-level attributes from a KG.

Let us consider a neural network f trained for image classification on a labeled
image dataset T = {(I, c) | I : Ω → R

3 and c ∈ C}. Moreover, assume we are
given a knowledge graph G = {〈c, p, a〉 | c ∈ C and a ∈ A} storing semantic
properties (a.k.a. attributes) A of classes from C, where the predicate p reflects
a visual property, e.g., hasColor , hasShape, hasPart . While any kind of relation
can be used in this context, we select those that likely provide visual attributes
because naturally they are more effective for vision tasks than other relations
such as capableOf , isA, etc.

We aim at aligning the neurons with the nodes a ∈ A from the KG G. While,
in principle, any set of neurons can be interpreted by our framework, we propose
to specifically focus on the neurons from fully-connected layers, since these are
known to reflect high-level abstract visual features [22]. Therefore, we consider
a layer fl : Rm → R

n, x 
→ σ(Wx + b), where m and n stand for the fan-in
and fan-out, respectively, for the given layer indexed by l and σ : Rn → R

n

is an activation function. For fl(x) =
[
o1 o2 . . . on

]�, we will use the notation
o1, o2, . . . , on for the individual neurons.

In the first step of our framework, we model the input data as a transaction
database (Sect. 3.1). We then compute the neuron-attribute alignments using
data mining-based methods (Sect. 3.2). The output of our framework is a set of
neuron-attribute pairs ρ of the form (o, a), where o is an individual neuron of
f , and a ∈ A is an entity in G corresponding to an attribute of a class in C. In
Sect. 4 and Sect. 5, we empirically provide answers to Q1–Q3.

3.1 Data Modeling

Suppose we are given a dataset S = {(I, c) | f(I) = c} ⊆ T of images
that are correctly classified by f . Given the neural network f , and the set
N = {o1, . . . , on} of individual neurons from the target layer fl we proceed
with constructing the transaction dataset D with items I = C ∪ N ∪ A. For
every (I, c) ∈ S, D stores a transaction (i,Xi), where i is the unique ID of the
image I, and Xi ⊆ {c} ∪ N ∪ A. For a ∈ A, we have that a ∈ Xi iff 〈c, p, a〉 ∈ G,
that is, the class of the image c and all of its attributes from the KG are in Xi.

Intuitively, for every neuron o ∈ N , it holds that o ∈ Xi iff o has high value
before softmax when I is passed through f . To detect neurons from N with high
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value, the continuous values of the neurons are simply thresholded to a binary
value vo ∈ {0, 1}. This can be done a priori (e.g., for post-ReLU activations) or
by dynamically thresholding above neuron-specific percentile [16,24]. This way,
for each image Ii ∈ S we identify a set of neurons from N with high activation
value for the given image, and collect them into Xi.

3.2 Neuron-Attribute Alignment

We then rely on the constructed transaction data D to compute the alignments
between neurons and attributes, i.e., items in N and those in A, respectively.
We propose methods for computing such alignments that we describe next.

Direct Method. Intuitively, a neuron o is correlated with an attribute a if
the following two conditions hold: 1) it is highly probable that the attribute a is
visually present in an image given that the neuron o is active for it; 2) it is highly
probable that the neuron o is active, given that the attribute a is visually present
in the image. Note that we cannot straightly compute the respective probabilities
since the images are not explicitly labeled with the attributes. Therefore, instead,
we estimate such probabilities by relying on the assumption that an attribute a
is likely visible in an image I belonging to the class c if 〈c, p, a〉 ∈ G.

The first method that we propose (referred to as direct) is to directly con-
struct the target alignments by identifying correlated pairs (o, a), where o ∈ N ,
and a ∈ A, such that J (o, a) ≥ θ for a predefined threshold θ. The computed
pairs are collected into the set ρ.

Example 1. Given D from Fig. 2 and θ = 0.7, we have J(o1, sink) = 4/6,
J(o1, table) = 3/4 and J(o3, bath) = 2/3, J(o3, sink) = 3/6. Thus, we obtain
only (o1, table) as the resulting alignment.

Constrained Method. While natural, the main drawback of the above direct
method is that it only considers correlated pairs of neurons and attributes but
ignores the knowledge about classes, like both bathrooms and kitchens have
sinks, while offices and bedrooms do not. This information is important, espe-
cially when the dataset is unbalanced, to ensure that all meaningful alignments
are computed.

Example 2. Reconsider Example 1. Looking closer at D, one can observe that
o1 is highly correlated with the class kitchen, as it is active for all images of this
class. Similarly, o3 is highly correlated with the class bathroom. Since bath is
the attribute which is relevant only for the class bathroom but not for kitchen,
it would be expected that (o3 , bath) is also included in the resulting set of align-
ments along with (o1 , table). Decreasing the threshold θ to a lower value (e.g.,
0.65) would resolve this, but would also lead to (o1 , sink) being in the result,
which is counter-intuitive, since sink is an attribute which is relevant both for
bathroom and kitchen, but o1 is active only for images of the latter class.
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Intuitively, an alignment is deemed meaningless if it fits into the cases (a) or
(b) depicted in Fig. 3 (more formally defined via constrains below). An alignment
in Fig. 3 (a) is undesirable, because we consider the neuron’s activity as a sign
of the existence or absence of the attribute in the input image. Consequently, if
a neuron is active frequently for images of only one particular class, it might be
a sign that this neuron is triggered by some attribute that only belongs to this
class but not shared with other classes. Similarly, following Fig. 3 (b), if a neuron
is active frequently for images of a set of classes, then it might be an indication
that it is triggered by attributes that are shared among these classes.

For example, if o is aligned with the sink, then we expect o with high prob-
ability to be active for images of classes that typically contain sink (e.g., bath-
rooms and kitchens), but not those that do not have sink (e.g., bedrooms and
offices). To alleviate the threshold’s rigidity in the direct method, we establish
formal constraints that allow us to filter out those and only those alignments
that become completely meaningless when the class information is taken into
account. The respective constraints are presented below:

(1) if |{ci ∈ C | 〈ci, p, a〉 ∈ G}| ≥ 2, and |{cj ∈ C | 〈cj , p, a〉 ∈ G and J(o, cj) ≥
β}| < 2, then (o, a) is an invalid alignment (see Fig. 3 (a)).

(2) if 〈ci, p, a〉 ∈ G, for all cj ∈ C \ {ci}, 〈cj , p, a〉 �∈ G and |{cj ∈ C \
{ci} | J(o, cj) ≥ β}| ≥ k − 1, then (o, a) is an invalid alignment, where
2 ≤ k ≤ |C| is a parameter (see Fig. 3 (b) for k = 2).

Intuitively, the first constraint (1) states that if at least two classes have an
attribute a, but only less than two out of them are correlated with the neuron
o, then the alignment (o, a) is invalid. The second constraint (2) reflects that if
a is relevant for a single class only, and the number of other classes correlated
with o is larger than k, then (o, a) is invalid.

In the constrained-k method, after computing the alignments relying on the
Jaccard similarity for a given threshold θ, we post-process the results by remov-
ing alignments that violate the above constraints. The constrained-k method is
illustrated by the following example.

Example 3. We have 〈ci, has, sink〉 ∈ G for ci ∈ {kitchen, bathroom} in Exam-
ple 1, i.e., sink is an attribute that is relevant for at least two classes. Moreover,
for β = θ, we have J(o1, kitchen) > β, but J(o1, bathroom) < β, namely, the
neuron o1 is only frequently active for images of kitchen, but rarely for those of
bathroom. Hence, based on the constraint (1), we remove (o1, sink) from the list
of alignments computed by the direct method. Analogously, (o3, sink) is removed.

4 Evaluation and Applications

We now discuss various strategies for evaluating the computed neuron-attribute
alignments as well possible applications, where they can be useful.
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Copy-Paste Adversarial Examples. Adversarial images are images that are
intentionally perturbed to confuse and deceive visual models. Changes to the
image can be made in different ways, one of which is by copying patches from
images of one class and pasting them into images of another class. Images with
this type of perturbation are known as copy-paste adversarial images (as defined
in [3]). Our hypothesis is that, if the network learns in terms of the attributes
used in our work for interpreting neurons, then copying an image patch of an
attribute relevant only for single class and pasting it into an image from another
class should result in confusing the CNN to predict the class of the given image
as the one to which the patch belongs. An example of a copy-paste adversarial
image can be obtained by copying the image patch representing the bed from
a bedroom image and pasting it into a bathroom image. Intuitively, if passing
the bathroom image with a bed through a CNN trained on images of bathrooms
and bedrooms results in confusing the network to classify the input image as a
bedroom, then one can confirm that the network learns in terms of the attributes
associated with the classes. We exploit the copy-paste adversarial images to in
Sect. 5 to address (Q1) and Q2.

Towards addressing (Q3), next we propose applications, in which the com-
puted neuron-attribute alignments could be useful.

Zero-Shot Learning. The first application concerns zero-shot learning, i.e., a
popular task in image classification, in which images of new (i.e., unseen) classes
that do not exist in the training set need to be classified. For that, we develop an
image classifier from the obtained neuron-attribute alignments. More specifically,
given an image I of an unseen class, the trained network f , the pre-computed
neuron-attribute pairs ρ = {(o, a) | o ∈ N , a ∈ A}, as well as the KG G storing
the semantic information about the (un)seen classes, our goal is to derive the
most likely class to which the target image I belongs. First, we pass I through
f , and collect the set of activated neurons among o ∈ N . We then exploit the
neuron-attribute pairs ρ to retrieve the list of attributes, with which the active
neurons are aligned, i.e., AI = {a ∈ A | (o, a) ∈ ρ and o is active by I in f}.
Finally, relying on G, the classes c ∈ C are ranked based on the following scoring
function:

Score(c)=
∑

a∈AI

wa / |{a : 〈c, p, a〉∈G}| (2)

where wa is the ratio of neurons activated by the given image that are aligned
with the attribute a to the total number of neurons activated by the image. The
more active neurons are aligned with an attribute a, the more certain we are
that a exists in the image and subsequently the greater is wa. The candidate
classes are ranked based on the formula from Eq. 2 and the top-ranked class is
selected as the final prediction. Intuitively, the proposed technique referred to
as attribute-based classifier allows one to reduce the image classification task to
reasoning over the KG. The attribute-based classifier acts as an evaluator of the
extracted alignments; if it gives high classification accuracy, then the extracted
alignments reflect what the network learns.
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aggregate alignments are later employed to reason about images from unseen classes.

Reasoning over Multiple Networks. The described attribute-based classifier
can also be exploited in the setting, where multiple neural networks trained on
non-intersecting sets of classes are used to solve tasks that are outside their
initial scope (i.e., classify images into classes unseen by either of the networks).
The systematic way of combining knowledge extracted from multiple networks
is beneficial, as it allows one to avoid massive retraining on a larger number of
classes while preserving high accuracy of predictions.

The procedure for attribute-based zero-shot classification can be naturally
extended to handle several networks. First, we collect activated neurons for
a given image from a number of networks, and then use the neuron-attribute
alignments pre-computed for each network separately to detect attributes in the
image. Finally, we merge the acquired knowledge using KG to make a decision
regarding the most likely class of the image exactly in the same way as described
above.

Example 4. Consider two convolutional neural networks f1 and f2 trained
on the classes C1 = {livingRoom, classroom} and C2 = {gym, bathroom},
respectively. Assume that the classes from C1 have the following attributes
A1 = {table, chair , desk}, while those from C2 contain the set of attributes
A2 = {mat , sink , towel}. Combining the knowledge acquired by the two net-
works would allow us to classify images into a new class, e.g., kitchen, which
contains the set of attributes A3 = {table, sink} that were seen separately by
the respective networks (see Fig. 4).

5 Experiments

We evaluate the proposed method for aligning neurons of a network with
attributes of classes from a knowledge graph by empirically analyzing (Q1)-
(Q3) from Sect. 3.
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5.1 Experimental Setup

Datasets. We consider the popular MITScenes [19] and AwA2 [28] datasets,
and use ConceptNet [26] knowledge graph as a knowledge source.

MITScenes: We have selected images from the MIT scene dataset [19] belonging
to classes whose visual properties are well covered in ConceptNet, which resulted
in 10,475 images labelled with 15 classes. We use 3,840 images from 10 classes
for training. For testing the performance on seen classes, we have 2,320 images
belonging to the same 10 classes. For testing on the unseen classes, we have
4,675 images from the remaining 5 classes. On average, for each class, we get
645 images.

AwA2: We also consider a subset of the AwA2 [28] dataset, in which the semantic
information about image classes is well covered in the KG. We get 17,746 images
spread across 20 classes. For training, we have 7,842 images from 15 classes. For
testing on seen classes, we have 5,229 images belonging to the same 15 classes.
For testing on unseen classes, we have 4,675 images from the remaining 5 classes.

ConceptNet KG: The AwA2 and MITScenes datasets come with attributes
already; however, their coverage is rather low ( 7.2 attributes per class at most).
Our goal is to demonstrate the usefulness of commonsense KGs as sources for
acquiring further class knowledge. For that, we have extracted attributes from
a popular commonsense KG, ConceptNet [26]. For MITScenes, we collect the
attributes connected to the classes via the inverse of atLocation relation (e.g.,
〈table, atLocation, kitchen〉). In total, we get 1,680 attributes which on average
amounts to 112 attributes per class. For AwA2, we use the predicate has to get
3,352 attributes, which yields 167 attributes per class on average.

CNN Training. We adopt ResNet50 [12] pre-trained on ImageNet [7] as the
backbone, which in some experiments is fine-tuned on the considered datasets,
while in others trained from scratch as described separately in each subsection.
We replaced the fully connected layer before the last one in ResNet50 with a
fully connected layer that has 2,048 neurons, which we aim at aligning with the
attributes from ConceptNet.

Baselines. We compare our direct (dir) and constrained (con) methods (with
fine-tuned parameters θ and β) for the attribute-based classification against the
state-of-the-art methods that likewise make use of KGs (but do not map neu-
rons to the KG entities), namely Dense Graph Propagation method (DGP) [14],
Attentive Zero-Shot Learning method (AZSL-D) [10], and ZSL-KG [17]. AZYL-
D and ZSL-KG rely on DGP, which is a framework that proposes a dense con-
nection scheme of a knowledge graph to optimize the knowledge propagation
between distant nodes in shallow networks such as graph convolution networks.

We run the methods proposed in [10] and [17], ensuring that no semantic
information about unseen classes in the KG is used during training.
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Fig. 5. Copy-paste adversarial examples: art studio with an island attribute relevant
only for kitchen (left) and office with a rug relevant to classes bedroom and office.

Table 1. Class samples of adversarial copy-paste examples.

Original class Inserted attribute Resulting class

Dining room Wall with doors Corridor

Classroom Shower Bathroom

Office Bed Bedroom

Kitchen Furniture Office

Living room Painting Art Studio

Evaluation Metrics. We use the standard hit@1 metric, which reflects the
percentage of test images for which the method returned the correct class pre-
diction in the top-1.

5.2 Copy-Paste Adversarial Examples

To answer (Q1)-(Q2), following [16] we first generate the copy-paste adversar-
ial examples using the MITScenes dataset, which comes with labeled seman-
tic segments, as follows. Out of all labels, we select those (set A) which are
present in ConceptNet. Then, for each class c ∈ C, we construct the set
Ac = {a | 〈c, p, a〉 ∈ A and ∀c′ ∈ C, 〈c′, p, a〉 �∈ G}. For every pair of images
I, I ′ from the test set belonging to different classes c and c′ respectively, we
insert the visualization of a randomly selected attribute a ∈ Ac′ from the image
I ′ into the image I, and label it with c′. For example, given an image I of an art
studio and I ′ of a kitchen, as a copy-paste adversarial example, we generate an
image I with the kitchen island from I ′ inserted into I (see Fig. 5 for illustra-
tion). The resulting image is labeled as a kitchen. The attributes to be inserted
for every class are chosen randomly while making sure that they exist visually
in at least one image (see Table 1 for class and attribute examples).
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Table 2. Results for copy-paste adversarial classification on the MITScenes dataset.
The alignment score is the percentage of images on which the attribute-based classifier
(i.e., con-all, con-2 ) made the same prediction as ResNet50.

Method hit@1(%) Alignment(%)

ResNet50 78.2 –

con-all 82.3 96.14

con-2 82.1 96.64

This way, we obtain 2,320 adversarial copy-paste examples. We then ana-
lyze whether the considered CNN ResNet50 and our attribute-based classifier
described in Sect. 4 misclassify the adversarial images relying on the inserted
attribute. For instance, in the above example, we expect the network to misclassify
the art studio as a kitchen.To perform such an evaluation,we pass every copy-paste
adversarial example through the network and compute the hit@1 score.

The results are presented in Table 2. High misclassification and alignment
scores demonstrate that the KG attributes that distinguish classes from each
other are indeed important for classification [5].

We have also repeated the same experiment on examples, constructed by
inserting attributes relevant for multiple classes into the image (e.g., inserting a
kitchen door into the art studio). We observe that in this case, the misclassifica-
tion score in hit@1 drops to around 2% for ResNet50. This witnesses that not all
parts of an image are equally important for the network to make decisions, but
only those that are distinguishing a given class from others based on the KG.

5.3 Zero-Shot Learning Task

To answer (Q1) and (Q3), we compare the introduced methods for attribute-
based classification to the baselines AZSL-D [10], ZSL-KG [20], and DGP [14]
with respect to their performance on the zero-shot learning task.

For this task, we trained ResNet50 on 10 classes of the MITScene dataset.
We then used the trained network to compute the neuron-attribute alignment
pairs for the classes from the training set. The other 5 classes are used for testing.

Since the knowledge graph stores the semantic information about both seen
and unseen classes, we effectively exploit this knowledge along with the neuron-
attribute alignments computed by our methods to classify the images from the
unseen classes as described in Sect. 4. Importantly, the attributes of unseen
classes are only used at the inference phase, but not during training.

Table 3 presents the results for the zero-shot learning tasks for MITScenes
and AwA2 datasets, respectively. Importantly, we report the performance both
when using the attributes based on the semantic labels that accompany the
datasets, as well as those from the ConceptNet KG.4 For the MITScenes dataset,
4 We also experimented with the WebChild [27] KG, but the results for ConceptNet

are more promising.
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Table 3. Zero-shot learning results on MITScenes and AwA2.

Attribute
source

Method Unseen
hit@1

Seen
hit@1

MITScenes AZSL-D 8.26 8.33

– DGP 19.87 9.73

– ZSL-KG 9.31 11.14

Labels direct 20.0 9.4

con-2 20.0 19.1

con-all 23.8 30.4

Concept Net direct 31.7 10.2

con-2 38.4 50.0

con-all 37.6 50.8

AwA2 AZSL-D 23.9 6.5

– DGP 24.1 6.6

– ZSL-KG 9.38 14.18

Labels direct 29.2 12.0

con-2 38.6 41.5

con-all 24.6 23.4

Concept Net direct 32.7 9.5

con-2 40.2 47.6

con-all 23.1 19.1

the attribute-based classifier that exploits attributes from ConceptNet outper-
forms all baselines including the attribute-based classifier that makes use of
the labels coming with the dataset. This is due to the fact that, among visual
attributes, the KG also provides a set of non-visual attributes that help in link-
ing semantically similar classes via alignments. Moreover, the attribute labels
coming from the dataset are shared among different classes, which leaves only a
few attributes discriminatively describing each class.

Example Alignments. We present the alignments computed by our method
for the considered datasets in Fig. 7. One can observe that the alignments indeed
contain attributes visually relevant to the respective images.

5.4 Reasoning over Multiple Networks

We analyze the usefulness of the neuron-attribute alignments for the task of joint
reasoning over multiple networks without having to retrain or fine-tune them.

In this experiment we trained from scratch two ResNet50 networks net1 and
net2, on AwA2 as follows. net1 was trained for 15 epochs on 8 classes, and net2
for 15 epochs on the other 7 classes. Moreover, we trained another network net
on all 15 classes for 16 epochs. We get for net1 a test accuracy on seen classes
of 74.2%, for net2 of 86.4%, and for net 80.5%. For the test set, we have images
from 5 unseen classes.
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Fig. 6. Zero-shot learning using neuron-attribute alignments over multiple networks
on AwA2 (left) and MITScenes (right).

Fig. 7. Examples of neuron-attribute pairs computed by our method.

Figure 6 shows the results of the presented methods for reasoning over knowl-
edge learned by multiple networks. For AwA2 dataset, the attribute-based clas-
sifier that jointly considers neuron-attribute alignments from both net1 and net2
outperforms the attribute-based classifiers constructed separately for net1, net2
and net respectively. For the MITScenes dataset, a similar trend is observed with
the exception that the attribute-based classifier constructed relying on net2 sig-
nificantly outperforms the one based on net1 and has comparable performance
to other classifiers. This is due to the fact that net1 (resp. net2) was trained on
classes with many (resp. few) attributes in common with the unseen classes.

6 Related Work

Recently, there has been an increasing interest in understanding what deep learn-
ing models learn. Our work extends the earlier proposals on explaining individual
neurons in deep representations [2,6,9,16,25]. However, in contrast to existing
work, we do not rely on large amounts of training data, but instead exploit exter-
nal knowledge graphs. In [25], semantic knowledge (in the form of ontologies)



88 Y. Ismaeil et al.

has also been considered for interpreting CNNs by generating explanations, yet
this method again makes use of labeled and segmented images, unlike we do.

Our approach for aligning neurons and KG attributes is in the spirit of [8,
13], where data mining has been exploited for interpreting neural networks or
forming concepts based solely on neurons, but KGs have not been considered
in this context. Recently, many works have motivated the exploitation of KGs
for enhancing the performance of image classifiers, e.g., [10,14,17,20] (see [4] for
an overview). The direction of explaining the behavior of CNNs with semantic
technologies has been also discussed as a valuable research stream in several
works [15,21]. However, to the best of our knowledge, no concrete proposals for
aligning individual neurons with KG entities exist to date.

Several works have considered graph neural networks (GNNs) for zero-shot
learning [10,14,17,20]. These methods make use of graph-structured external
knowledge, in which each class is represented by a single node and each inter-
class link is represented by an edge. Given the external knowledge graph, its
embedding representation is first computed using a GNN, and then exploited
for the zero-shot learning task.

Some techniques [10,14] utilize convolutional layers with an additional dense
connection layer to propagate features to distant nodes within the same net-
work. The work [10] further introduced weighted aggregation as a method for
emphasizing more significant neighboring nodes for class nodes. A key differ-
ence between these approaches and our work is that they do not aim at aligning
neurons with KG entities like we do. Additionally, they explicitly include KG-
based information about unseen classes during training, whereas we only exploit
this knowledge at the inference phase. We observed that when knowledge about
unseen classes is omitted from the information used for training, the performance
of AZSL-D [10], DGP [17], and ZSL-KG [20] drops significantly (see Table 3).

7 Conclusion

This paper proposes a framework for aligning neurons of a neural network to
attributes defined by external commonsense knowledge graphs. These alignments
not only make NNs more interpretable (see Fig. 7 for examples), but are also
useful in various applications, such as zero-shot classification (using multiple
networks). Our framework does not require the knowledge about unseen classes
to be used during training, but rather exploits it at inference stages. Our results
demonstrate that commonsense KGs contain distinctive attributes relying on
which CNNs tend to perform classification. This demonstrates the importance
and usefulness of commonsense KGs for computer vision tasks.

Although we relied on ConceptNet KG in the experiments, our work is cer-
tainly not bound to it, and other KGs (or combinations of them) can likewise
be exploited. We believe that our method has a broader impact, as it offers an
interesting perspective for reducing machine learning tasks to those of reasoning
over KGs.
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