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Abstract. Temporal heterogeneous information network (temporal HIN) embed-
ding, aiming to represent various types of nodes of different timestamps into low-
dimensional spaces while preserving structural and semantic information, is of
vital importance in diverse real-life tasks. Researchers have made great efforts
on temporal HIN embedding in Euclidean spaces and got some considerable
achievements. However, there is always a fundamental conflict that many real-
world networks show hierarchical property and power-law distribution, and are
not isometric of Euclidean spaces. Recently, representation learning in hyperbolic
spaces has been proved to be valid for data with hierarchical and power-law struc-
ture. Inspired by this character, we propose a hyperbolic heterogeneous temporal
network embedding (H*TNE) model for temporal HINs. Specifically, we lever-
age a temporally and heterogeneously double-constrained random walk strategy
to capture the structural and semantic information, and then calculate the embed-
ding by exploiting hyperbolic distance in proximity measurement. Experimental
results show that our method has superior performance on temporal link predic-
tion and node classification compared with SOTA models.

Keywords: Temporal heterogeneous information networks - Hyperbolic
geometry - Representation learning

1 Introduction

Heterogeneous information networks (HINs), which are seen as general and simplified
knowledge graphs (KGs), are of a ubiquitous structure in various domains. HIN embed-
ding has received great attention in recent years because of its powerful representation
abilities for both structural and semantic information in real-world networks [4]. Dif-
ferent types of nodes are mapped into a low-dimension space for diverse downstream
analytic tasks, such as pattern matching, node classification and link prediction, within
lower time and space complexity [6].

Most existing HIN embedding methods focus on static networks. These methods
are designed to preserve the topological structure and contextual semantics without
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Fig. 1. The degree distributions of two real-world networks Tokyo and DBLP. The coordinate
axes are logarithmic.

considering any temporal information. For example, PTE [29] embeds text data through
heterogeneous text networks. HAN [32] and MAGNN [8] are proposed to capture the
semantics involved in multiple types of nodes.

Complex real-world networks, however, are constantly evolving over time. As
a result, how to capture temporal information in dynamic networks becomes more
challenging. Many methods are proposed for temporal homogeneous networks like
CTDNE [16], while studies on temporal HIN embedding are much less. Most of exist-
ing methods for temporal HIN embedding like DHNE [36], are non-incremental learn-
ing. They are designed to deal with snapshots rather than dynamic networks which keep
changing by time. THINE [12] uses attention mechanism and metapath to capture het-
erogeneous information, and furthermore, Hawkes process is leveraged to simulate the
evolution of temporal networks.

Although these embedding models have shown great performance in many areas,
they are all built upon Euclidean spaces and their representation capacity is inher-
ently limited by the dimension of embedding space. Recently, it has been noticed that
complex real-world networks like social networks and many KGs always exhibit non-
Euclidean structures [2]. As Fig. 1 shows, we find that the degrees of nodes follow
power-law distributions in most real-world networks, in other words, indicate hyper-
bolic structures. Hyperbolic spaces are those of constant negative curvature and the
areas of disks in hyperbolic spaces grow exponentially with their radius rather than
polynomially in Euclidean spaces. Due to the exponential expansion property [15], the
representation capacity and generalization ability of hyperbolic spaces for data with
hierarchical structures or power-law distributions are potentially excellent [24]. In the
past few years, researchers have made some progress in this domain [20,33,38]. Nev-
ertheless, we find that none of them is designed for temporal HINs.

To this end, we propose H*TNE, a novel hyperbolic heterogeneous temporal net-
work embedding model. First, we leverage a temporally and heterogeneously double-
constrained random walk strategy to capture the topological structure and contextual
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semantics over time. Then defined in hyperbolic spaces, our model maximizes the prox-
imity between neighbors and minimizes it between negative samples. Moreover, we
derive how the optimization process is calculated. Experiments on several real-world
datasets show that our H*TNE outperforms SOTA methods in two advanced analytic
tasks temporal link prediction and node classification.

The contributions of this paper are summarized as follows:

— To our best knowledge, we are the first to study general temporal HIN embedding
problem in hyperbolic spaces.

— We propose a novel temporal HIN embedding model H*TNE, which leverages a
temporally and heterogeneously double-constrained random walk strategy to capture
the structural and semantic information, and exploits hyperbolic spaces to take full
advantage of the power-law distributions for real-world networks.

— We conduct extensive experiments and the results show our model has better perfor-
mance than several SOTA methods in node classification and link prediction tasks.

The rest of the paper is organized as follows. In Sect. 2, we make a brief but sys-
tematical review for related studies. Section 3 introduces necessary preliminaries and
Sect. 4 presents our proposed H*TNE from two key modules random walk sampling
and hyperbolic embedding. Experiments are described in Sect. 5. Finally, we conclude
our paper in Sect. 6.

2 Related Work

In this section, we systematically review the existing network embedding methods from
three aspects, including traditional network embedding models, deep network embed-
ding models and hyperbolic network embedding models.

Traditional Network Embedding Models. Network embedding aims to map nodes
to a low-dimension space without losing structure and semantics of the network. In
early researches, because of the unstructured character of networks, different sequential
sampling strategies are proposed to simplify the data processing, e.g. Deepwalk [25]
and node2vec [9]. LINE [30] learns node embeddings from the first-order and second-
order neighbors. As the researches deepen, heterogeneous and temporal information
are taken into account. Metapath2vec [7] leverages metapath-based random walks and
achieves great performance. DynamicTriad [40] preserves structural information and
evolution pattern on network snapshots by triadic closure process. Inspired of above two
models, Change2vec [1] handles the difference between two snapshots by metapaths
and triadic open/closure process.

Deep Network Embedding Models. With the development of deep learning, many
GNN-based embedding models have emerged in recent years. GCN [14] aggregates
messages from neighbors to update embeddings, and furthermore, GAT [31] introduces
attention mechanism for aggregation and is competent on inductive tasks. M2DNE [19]
describes the temporal evolution of networks in terms of microscopic and macroscopic
dynamics. DySAT [27] learns on snapshots by multi-head attention and achieves a great
performance on link prediction. SHCF [17] jointly considers sequential information
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as well as high-order heterogeneous information. THINE [12] simulates the dynamic
evolution of heterogeneous networks. LIME [23] incrementally trains on temporal HINs
and significantly lowers memory resources and computational time.

Hyperbolic Network Embedding Models. Representation learning in hyperbolic
spaces has been applied to network embedding due to the non-Euclidean structures
of real-world networks. [20] learns hierarchical features of networks in the Poincaré
ball, while [21] discovers pairwise hierarchical relations in Lorentz model. HHNE [33]
is constructed in hyperbolic spaces on account of the power-law distribution of HINs.
[18] proposes hyperbolic graph neural networks on graph classification problem, and
HGCN [3] uses hyperbolic graph convolution networks for node embedding. HAT [38]
exploits graph attention networks and devises a parallel strategy to improve the effi-
ciency. Besides, h-MDS [26] provides a precision-dimension trade-off in hyperbolic
embedding. [37] tells that hyperbolic models are more suited for sparse datasets and
greatly outperform Euclidean models when the latent dimension number is small.

All above network embedding models are either built upon Euclidean spaces, or
focused on only part of network features. In order to achieve better performance, we
propose a hyperbolic embedding model with taking both temporal and heterogeneous
information into account.

3 Preliminaries

In this section, we first define the temporal HINs and the problem of temporal HIN
embedding. Then some critical properties of hyperbolic geometry are briefly introduced.

3.1 Temporal HIN Embedding
Following [5, 16,28], HINs and temporal networks are defined traditionally as:

Definition 1 (HINs). A heterogeneous information network is defined as G =
WV, E, ¢, ), inwhichV and £ are the sets of nodes and edges. Each nodev € V and each
edge e € & are associated with mapping functions ¢ : V — Ly and ¢ : € — Lg. Ly
and Lg denote the sets of node and edge types respectively and satisfy | Ly |+ |Lg| > 2.

Especially, a KG is a natural HIN since it contains different types of objects (e.g.
subjects and objects) and links (e.g. properties) [39]. As a consequence, a general HIN
model can be applied into KGs in most cases even with extra information like times-
tamps.

Definition 2 (Temporal Networks). A temporal network is defined as G = (V,E,7),
where V indicates the set of nodes and £ indicates the set of edges. Each edge e € £ is
associated with the mapping function T : £ — T, which maps edges to timestamps.

It is worth noting that most existing temporal network models are designed for
intermittent network snapshots, while our work studies the continuous-time dynamic
networks. In other words, temporal networks in this paper can be seen as an edge
stream and multiple edges may be established between two nodes at different times-
tamps. Based on Definition 1 and Definition 2, we formalize the temporal HINs as
follows:
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(a) Distance in the Poincaré ball (b) Embedding a tree in D

Fig. 2. (a) The colored curvatures V102, V304 and vsvg indicate the distances between nodes in
the Poincaré ball. Geodesics are drawn as dashed curvatures. It’s worth noting that the distance
increases exponentially relative to Euclidean distances with the points being closer to the bound-
ary. Best viewed in color. (b) Referred from [20]. It shows an example that a tree (a network with
power-law distribution) is embedded into the Poincaré ball.

Definition 3 (Temporal HINs). A temporal HIN can be formalized as G =
WV, &, p,0,T), in which V and & are the sets of nodes and edges. Mapping functions
¢V — Lyand ¢ : E — Le map nodes and edges into node types and edge types
separately. |Ly| + |Le| > 2 is satisfied. Another mapping function T : £ — T maps
edges to timestamps.

In this paper, we aim to achieve the node embeddings of temporal HINs with consid-
eration of not only temporal dynamics but also heterogeneous semantics. The problem
is formally described as:

Problem (Temporal HIN embedding). Given a temporal HIN G = (V,E, ¢, 0, T),
the output is a node representation matrix X € RIVI*X4. Each row of X is an embedding
vector that corresponds to a node and d < |V| is the number of embedding dimen-
sions. The representation matrix X needs to keep the influence of edge timestamps and
node/edge types.

3.2 Hyperbolic Geometry

Next, we introduce hyperbolic spaces. The n-dimensional hyperbolic space H" is the
unique simply connected n-dimensional complete Riemannian manifold with a con-
stant negative sectional curvature. One critical property of hyperbolic spaces is that they
expand exponentially, which means the areas of disks with radius r are of O(e"). This
leads to the conclusion that data with power-law distribution is natural to be modeled
in hyperbolic spaces [15]. Although hyperbolic spaces are not isometric to Euclidean
spaces and difficult to perform operations on them consequently, there exist several
well-known equivalent models of hyperbolic spaces defined on different Euclidean
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domains, such as the Klein model, the Poincaré ball model and the half-plane model.
The Poincaré ball model is widely used because it is suitable for gradient-based opti-
mization [20]. For an n-dimensional hyperbolic space with the curvature ¢, the defini-
tion domain of corresponding Poincaré ball model DD is the point set

- 1
ID){(xl,xQ,...,zn):Zz?<c}. (1
i=1

In this paper, let ¢ = —1 if there are no special instructions. Under this circumstance,
the Poincaré ball becomes an open unit ball. The distance between two points u and v
in the ball is

B 2 — v
dp(, v) = arcosh (1 T TP - ||v||2>> ! @

where arcosh(z) = In(z + v/22 — 1) is the inverse hyperbolic cosine function. Note
that the variation of distance is influenced by the location of u and v. When (1 —
lul|?) — 0and (1 — ||v||*) — 0, the points are close to the boundary of Poincaré ball
and the distance between them is much larger than the case that they are closer to the
center. See Fig. 2(a) for an illustration and Fig. 2(b) gives an example for embedding a
tree-like network into the Poincaré ball.

4 Proposed Model

In this section, we describe our proposed H*TNE in details. As Fig.3 shows,
H2TNEfirst leverages a temporally and heterogeneously double-constrained random
walk strategy [10] to capture both the topological structure and contextual semantics
over time. Then, we propose a hyperbolic model defined in Poincaré ball to calculate
the embeddings of nodes. Furthermore, we introduce how to optimize the model and
analyze the time and space complexity.

4.1 The Double-Constrained Random Walk

In temporal networks, random walk over time is a natural choice. But in real world, one
event may cause several additions of edges, and these edges share the same timestamp.
This means local structures with the same timestamp always imply strong relations and
semantics. Therefore, within the random walk going over time, a reasonable strategy
needs to allow the next hop to stay at current timestamp. So how to make the trade-off
between time going and staying becomes a challenge.

Non-decreasing temporal random walk is to run random walk process on a given
temporal network G with the non-decreasing order on timestamps. Each generated node
sequence (vy,va, .. .,v;) conforms to the following rules:

1. Fori = 2,...,1 — 1, the timestamps between adjacent edges obey 7(v;—1,v;) <
T(Ui, Ui-i—l)-
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Fig. 3. The temporally and heterogeneously double-constrained random walk. Different colors
refer to different node types and the timestamps are labeled on the edges. Last hop of the random
walk is from node u to node v at timestamp ¢;. Best viewed in color. (Color figure online)

2. The probability of 7(v;_1,v;) = 7(v;, v;4+1), Which means the timestamp of next
hop equals to current timestamp, descends with the increase of hops staying at the
same timestamp.

The latter tries to ensure that the random walk goes over time, and meanwhile keeps the
possibility of staying at current timestamp. Let t; = 7(v;_1, v;), then the probability of
next hop staying at ¢; is:

stop if N, (tF) = @,
P(r(vi,vig1) =t;) = ¢ 0 if t; € T(N,,), 3)
B"™ otherwise.

Here, N, is the universal neighbor set of node v, AV, (¢*) is the set of those connected
with node v at timestamp ¢ or later, 7 (V) denotes the timestamp set of edges between
node v and its neighbors. 5 € [0, 1] is the initial timestamp staying probability and n
refers to the number of hops for which the random walk have been at current timestamp.
First, in case that all the edges connected to node v; are before timestamp ¢;, we can
only stop this random walk. Second, in case that there are no edges connected to node v;
at timestamp t;, the next hop can only be chosen from the edges after ¢;. Finally, if the
timestamps of edges between node v; and its neighbors contain both ¢; and those after
t;, we probabilistically control the next hop staying at timestamp ¢; with a probability
("™, and going to later timestamps otherwise. Adopting an exponential decay function
here penalizes the cases that the random walk stays at the same timestamp for too long.

Taking Fig. 3 as an example, suppose that the random walk jumps from node u to v
at timestamp ¢; in the last hop and it has been at ¢; for n hops. The probability of next
hop staying at ¢;, which means jumping to v, or vs, is 5". Let 7, ;, denote the set of
timestamps related to v after ¢,. V¢t € 7, ;,, the probability of the timestamp of next
hop being t is (1 — 8")/| Ty 1, |-

The random walks on temporal HINs need to satisfy two constraints: one is the
non-decreasing principle for temporal information, and the other is for heterogeneous
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information. Taking node types into account, most existing methods use metapaths to
guide the random walk sampling. However, in our model, overlaying the temporal con-
straint, metapaths are too strict to ensure the random walk process going continuously.
Inspired by [13], we leverage a biased type choosing strategy based on historical walks.
Suppose that we have chosen ¢; to be the timestamp of next hop and currently the ran-
dom walk is staying at node v; of the node type ;, then the probability of next hop still
staying at node type [; is:

0 if Ny, (t) NN, (L) = @,
P (p(vig1) =li3ti) =< 1 if Ny, (t:) €N, (L), 4

o™ otherwise.

N, (t) denotes the set of neighbors which connect to node v exactly at timestamp ¢,
and N, (1) refers to neighbors of the node type I. « € [0, 1] is the initial node type
staying probability and m is the number of hops for which the random walk have been
at node type [. Similar to the timestamp of next hop as aforementioned, we consider the
following three cases. If any neighbors that connect to v; at timestamp ¢; are not of type
l;, the next hop will surely go to another node type. If all neighbors of v; at timestamp ¢;
are of type l;, the random walk can only stay at the same node type. If part of neighbors
at timestamp t; are of type [; while others are not, the probability of next hop being at
type I; should be . Similar to Eq. 3, we adopt the second exponential decay function
to avoid the random walk staying at the same node type continuously.

Back to Fig. 3, suppose that the random walk has been staying at the same node
type (in blue) for m hops. If we have chosen t5 as the timestamp of next hop, accord-
ing to Eq. 4, the probability of staying at current type is . Overlaying the tempo-
ral constraint, the random walk will jump to node vy in next hop with the probability
(L= B)/| Ty, - 0.

With above constraints, we incrementally update the random walks when new edges
come in order to lower the complexity of our model. In addition to newly added edges,
historical random walks should also be processed appropriately. On the one hand, in
real world, relations between entities are effected by historical events so they need to be
preserved. On the other hand, their influence decreases gradually over time and recent
events have greater importance for relations among entities.

The evolution of networks is manifested in the addition and deletion of nodes and
edges. When evolution happens, nodes which directly connected to new nodes and
edges are involved, and the random walks should be updated correspondingly. We con-
sider the following four cases to incrementally update the node sequences of random
walks when new edges come:

1. Preserve uninvolved sequences. If none of nodes in a sequence is involved, we
keep the sequence unchanged.

2. Remove invalid parts of sequences. If the timestamps of front part of a sequence
are too early, we treat this part as invalid and remove it.

3. Continue involved sequences. If the last node of a sequence is involved, continue
the random walk with above strategy.

4. Reverse new random walks from new timestamps. When new edges and nodes
come, to ensure that these changes are considered, reversed random walks from new
timestamps backwards are processed.
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With all above, we have captured the temporal and heterogeneous information of
the networks and imply it into node sequences of random walks. Next, we’ll explain
how to embed these nodes into the hyperbolic space.

4.2 Hyperbolic Embedding

Defined in Poincaré ball, we exploit the hyperbolic distance in Eq.2 to measure the
proximity between nodes and calculate their probability of co-occurrence in random
walks as following:

P(u|v) =0 (7d]])(ll, V)) ) &)

where o(z) = H%, u|v denotes the co-occurrence of node w and v, and u and v
denote the embedding vector of node v and v. For each node u, we randomly sample
k negative nodes, each of which is denoted by n and each of whose corresponding
embedding vector is denoted by n, to speed up the training. The proximity between u
and the co-occurrent node v is expected to be higher, so the optimization goal for each

node u is:
arg max logo (—dp(u,v)) + Zloga (dp(u,m)). (6)

Summing up all nodes and enhancing the ranking, the objective function of
H?TNE is written as:

—argmaxz Zloga (—dp(u,v)) +Z Z log o (dp(u,n))

uweN vulv uweN n;neg(u)

Nargmaxz Z Z log o (dp(u,n) — dp(u,v)),

uweN vulv nyneg(u)

(7

where neg(u) denotes the negative samples for node w.
Optimization. Due to the Riemannian manifold structure of Poincaré ball, the opti-
mization is different from Euclidean models. Following [20], we primarily calculate
the Euclidean gradients.

In training process, the parameters @ are updated for each step of calculation. For
I =logo (dp(u,n) — dp(u,v)),

% = (1 - o (dp(u,n) — dp(u,v))) - (3dﬂ)a(ll:7n) _ 8dD8(::’ V)) 7
% = (1 -0 (dp(u,n) — dp(u,v))) - <_5MHJ;§:»V)> 7 "
% = (1 — o (dp(u,n) — dp(u,v))) - <3dﬂ)a(:vn)> .
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Adp(u,v) 9ddp(u,v) Adp(u,n) Adp (u,n)
Ou and On

oy is further derived:

ddp(u,v) 4 ||VH2_2<“’V>+1u_l
Ou o O /*y?w — 55 Ou

ad]D (ll, V) _

ov 5u\/mw (
Jdp(u,n) (|n2—2un +1u_n>

ou g, \/%m
o \/7

||u||272uv +1

<
\

)

8d]1) (ll, n) _
On

||u\|2—2un +1 u>
n——J,

where 6, = 1 — ||u?, 6, = 1 — |

Yun =1+ ﬁ”u - n||2'
Next, combining with Riemannian gradient, a single embedding is updated as fol-

200 =1~ |n|* =1+ 55 [lu—v[? and

lows: 1 |u ld”2)2 ol
Unew < PIOj <uold + lr;au) ,
e P <V°“ s gi) ’ (10)
Dyew ¢ PIoj <1101d + lr(l_”ljwaafl) ’

in which Ir is the learning rate and proj(-) is a projection function that constrains the
embeddings within the Poincaré ball:

v /x| +e)ifllx] > 1,
proj(x) = {x otherwise. an

Here € = 107 is a small constant.

Time Complexity Analysis

The time complexity for random walk updating is O(|N| - 4;,,,), in which 4, is
the average length of updated part in random walks. The time complexity of hyperbolic
embedding training is O(I - k - d - |[N| - Ay,,,), where I is the number of iterations,

k is the number of negative samples for each node, and d is the dimension number of
embedding space.

5 Experiments and Discussions

5.1 Experimental Setup

Datasets. We make extensive experiments on four real-world datasets Enron!, DBLP?,
Tokyo [35] and MovieLens [11]. The statistics of these datasets are shown in Table 1.

! http://www.ahschulz.de/enron-email-data/.
2 https://www.aminer.cn/citation.
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Table 1. Statistics of the datasets.

Datasets Enron | DBLP | Tokyo | MovieLens
# Nodes 115 164,174 | 64,151 | 9,940

# Edges 43,160 | 845,485 | 573,703 | 1,000,209
# Node types | 9 2 2 2

# Timestamps | 20 46 555,437 | 25,865

Table 2. Baselines.

Methods Heterogeneous | Temporal
Shallow | Deepwalk [25]
CTDNE [16]
ISGNS [22]
Change2vec [1]
DHNE [36]
HHNE [33]
Deep GCN [14]

GAT [31]
DySAT [27]
LIME [23]
TGAT [34]

x| x| x| x| el x| x| x
SIS X XX & X

Baselines and Experimental Details. Table 2 lists eleven SOTA network embedding
methods, including six shallow models and five deep ones.

For all baselines, we take the recommended parameter settings except that the
embedding size is set to be 128. For H*TNE, we set the number of walks per node
as 10, the maximum of walk length as 80, the number of negative samples per node as
5 and initial learning rate as 0.001. For the experimental results in Sect. 5.2, we set the
values of v and 3 to be 0.9 and 0.3, and our method is trained on the dimensions both
16 and 128, denoted by H*TNE, s and H*TNE 23, respectively.

In order to validate the effectiveness of each part in our model, we further conduct
ablation experiments on three different H?TNE variants, in which H*TNE_},, denotes
ignoring heterogeneous information in random walk process, H*TNE_,, denotes ignor-
ing temporal information, and H2TNE_ ny denotes embedding in Euclidean spaces. For
fairness all of these three variants are evaluated with the dimension of 128.

We evaluate the performance of H*TNE for temporal link prediction and node
classification tasks on a server with 2 x Intel Xeon Gold 6226R 16C 2.90GHz CPUs, 4
X GeForce RTX 3090 GPUs and 256 GB memory. The experiments are run on Ubuntu
18.04 with CUDA 11.1.

5.2 Experimental Performance

We train the baselines shown in Table 2 in unsupervised manners on all datasets and
evaluate them by two traditional tasks, temporal link prediction and node classification.
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Table 3. Performance on temporal link prediction.

Dataset Enron Tokyo

Timestamp | 10 15 20 Avg 200k |300k |400k |500k |555k |Avg.
Deepwalk | 0.9105 | 0.9199 | 0.9015 | 0.9106 | 0.7854 | 0.8695 | 0.8386 | 0.8565 | 0.8831 | 0.8466
CTDNE 0.8403 | 0.9269 | 0.9120 | 0.8931 | 0.7124 | 0.7621 | 0.7519 | 0.7695 | 0.8239 | 0.7640
ISGNS 0.9162{0.7392 1 0.7384 | 0.7979 | 0.7159 | 0.7315 | 0.6997 | 0.6706 | 0.5779 | 0.6791
Change2vec | 0.7750 | 0.7796 | 0.7845 | 0.7797 | 0.5614 | 0.5266 | 0.5516 | 0.5164 | 0.4959 | 0.5304
DHNE - 0.5751|0.5774 | 0.5763 | - 0.5057 | 0.5005 | 0.5004 | 0.5002 | 0.5017
HHNE 0.8928 | 0.9135 | 0.8992 | 0.9018 | 0.6241 | 0.7225 | 0.7802 | 0.8513 | 0.8770 | 0.7710

GCN 0.8847|0.8916 | 0.8547 | 0.877 | 0.4944 | 0.4052 | 0.3626 | 0.3078 | 0.3004 | 0.3741
GAT 0.9360 | 0.8867 | 0.9292 | 0.9173 | 0.6911 | 0.6690 | 0.6518 | 0.7328 | 0.7086 | 0.6907
DySAT - 0.7456 | 0.8305 | 0.7881 | - 0.6576 | 0.6462 | 0.6473 | 0.6504 | 0.6504
LIME 0.5642|0.6296 | 0.5116 | 0.5685 | 0.5166 | 0.5144 | 0.5141 | 0.5107 | 0.5125 | 0.5137
TGAT 0.7224 1 0.6814 | 0.6799 | 0.6946 | 0.6432 | 0.6731 | 0.4647 | 0.6593 | 0.7365 | 0.6353

H?TNE ;. | 0.7886|0.9144 | 0.8994 | 0.8675 | 0.8753 | 0.8953 | 0.8848 | 0.8855 | 0.9008 | 0.8883
H2TNE_;. |0.71720.8954 | 0.9044 | 0.8390 | 0.8773 | 0.8936 | 0.8839 | 0.8834 | 0.8980 | 0.8872
H?TNE_, |0.9153 | 0.9363 | 0.9204 | 0.9240 | 0.7582 | 0.7907 | 0.7615 | 0.7779 | 0.8226 | 0.7822
H?TNE;s | 0.9052|0.9199 | 0.9060 | 0.9104 | 0.8432 | 0.8795 | 0.8702 | 0.8727 | 0.8921 | 0.8715
H2TNE12s | 0.9106|0.9233 | 0.9105 | 0.9148 | 0.8795 | 0.8977 | 0.8871 | 0.8872 | 0.9032 | 0.8910
Dataset DBLP MovieLens
Timestamp | 20 30 40 46 Avg 10k 15k 20k 25k Avg.

Deepwalk | 0.9290 | 0.8710 | 0.8422 | 0.8378 | 0.8700 | 0.8816 | 0.8482 | 0.8607 | 0.8310 | 0.8554
CTDNE 0.7381 1 0.5199 | 0.5657 | 0.5424 | 0.5915 | 0.3248 | 0.4165 | 0.4551 | 0.4577 | 0.4135

ISGNS 0.9321 1 0.8579 | 0.8414 | 0.7788 | 0.8526 | 0.8355 | 0.8030 | 0.8070 | 0.7771 | 0.8057
Change2vec | 0.5482 | 0.5161 | 0.5025 | 0.4989 | 0.5164 | 0.8438 | 0.8455 | 0.8643 | 0.8446 | 0.8496
DHNE - 0.5177{0.5002 | 0.5002 | 0.5060 | - 0.5007 | 0.5004 | 0.4995 | 0.5002
HHNE 0.3487 | 0.5956 | 0.6987 | 0.7195 | 0.5906 | 0.8683 | 0.8881 | 0.8834 | 0.8837 | 0.8809
GCN 0.6550 | 0.6308 | 0.5706 | 0.5878 | 0.6111 | 0.2318 | 0.2343 | 0.2491 | 0.1816 | 0.2242
GAT 0.6722|0.7472 | 0.6474 | 0.5657 | 0.6581 | 0.4960 | 0.2448 | 0.3311 | 0.3889 | 0.3652
DySAT - 0.5178]0.6046 | 0.6272 | 0.5832 | - 0.7463 | 0.7429 | 0.7167 | 0.7353
LIME 0.5041 | 0.5353 | 0.5392 | 0.5385 | 0.5293 | 0.4801 | 0.4753 | 0.4764 | 0.4786 | 0.4776
TGAT 0.5091 | 0.6215 | 0.3311 | 0.5648 | 0.5066 | 0.4000 | 0.4567 | 0.5326 | 0.5161 | 0.4764

H?TNE_j. | 0.7270 | 0.8151 | 0.8376 | 0.8379 | 0.8044 | 0.8899 | 0.9276 | 0.9450 | 0.9292 | 0.9229
H?>TNE_;. |0.7681 | 0.6947 | 0.7849 | 0.8007 | 0.7621 | 0.6925 | 0.6870 | 0.6987 | 0.7156 | 0.6985
H?TNE_;,, |0.7687 | 0.7989 | 0.7621 |0.7573 | 0.7718 | 0.7448 | 0.5182 | 0.5385 | 0.5597 | 0.5903
H?TNE;s | 0.9302 | 0.8770  0.8757 | 0.8505 | 0.8834 | 0.9264 |0.9433 | 0.9466 | 0.9377 | 0.9385
H?TNE12s | 0.9349 | 0.8812 | 0.8770 | 0.8582 | 0.8878 | 0.9380 | 0.9475 | 0.9555 | 0.9435 | 0.9461

* The best result is in bold, and the suboptimal result is underlined. The same applies to below
tables.
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Table 4. Performance on node classification.

Dataset Enron DBLP Tokyo MovieLens

Metrics Macro-f1 | Micro-f1 | Macro-f1 | Micro-f1 | Macro-f1 | Micro-f1 | Macro-f1 | Micro-f1
Deepwalk |0.1832 [0.3793 ]0.4999 0.9995 |0.5208 0.9617 10.9446 |0.9531
CTDNE 0.1277 0.2828 |0.6552 [0.9993 ]0.4915 0.9666 |0.9862 |0.9871
ISGNS 0.1084 |0.3034 |0.7438 |0.9995 |0.8501 0.9815 |0.9903 0.9909
Change2vec | 0.4482 | 0.6414 |0.4997 0.9989 |0.5229 09596 |0.9415 0.9628

DHNE 0.0641 0.3448 ]0.4998 |0.9994 |0.4910 |0.9648 |0.4002 |0.6036
HHNE 0.1497 10.2414 1 0.4997 [0.9986 |0.7953 |0.9889 |0.9906 |0.9912
GCN 0.2957 0.4344 |0.4999 |0.9994 0.5280 |0.9644 0.9995 | 0.9995
GAT 0.1824 0.2828 0.4998 [0.9993 |0.5723 |0.9674 |0.9599 |0.9624
DySAT 0.0972 1 0.2069 0.6358 |0.9977 |0.9095 |0.9816 |0.9445 |0.9478
LIME 0.0794 | 0.1538 0.4998 |0.9955 |0.4818 [0.9299 |0.8188 |0.8317
TGAT 0.1018 1 0.2069 |0.4998 |0.9992 |0.7381 0.9689 0.9459 | 0.9496

H2TNE_j. 0.1241 |03103 05907 09992 04908 09639 |0.9866 |0.9875
H>TNE_;. 04215 |0.5517 |0.6199 0.9995 |0.4903 |0.9618 |0.9880 |0.9888
H?TNE_j, 0.1628 03172 | 0.8023 | 0.9996 |0.9469 |0.9928 | 0.8434 |0.8523
H>TNE;¢ | 0.8121 07931 04999 09997 04916 |0.9670 |0.9873 |0.9915
H2TNE12s | 0.6783 | 0.7931 |0.6499 |0.9996 04913 09659 | 0.9995 |0.9995

Temporal Link Prediction. In this task, we divide Enron, DBLP, Tokyo and Movie-
Lens into 4, 5, 6 and 5 snapshots evenly according to timestamps, and for the ¢-th snap-
shot except the first, the models are trained on the first £ — 1 snapshots and tested on the
t-th snapshot. Noting that the Poincaré ball is a conformal model, which means that the
angles in hyperbolic spaces are equal to corresponding ones in Euclidean spaces, we use
the cosine similarity to calculate the proximity between nodes for fairness to all models.
AUC is used to measure the performance in this task. The experimental results for all
snapshots are shown in Table 3. In most cases, our method has the best performance and
even 16-dimension embeddings of H*TNE are better than previous models in dimen-
sion 128. On the dense dataset Enron, our method does not outperform other Euclidean
models, suggesting that hyperbolic models are more suitable for sparse data, which is
consistent with [37]. In addition, the results of ablation models show that performance
of different variants mostly degrades. It proves that double-constrained random walk
strategy does capture the temporal and heterogeneous information and the hyperbolic
space does enhance the representation ability of our model.

Node Classification. In this task, we use 75% of node embeddings for each dataset
to train a Logistic Regression classifier and the remains are treated as the test set. The
results are evaluated by two metrics macro-fl1 and micro-fl. As Table4 shows, our
method outperforms other models in most cases. It’s worth noting that for most methods
in datasets DBLP and Tokyo, the difference between macro-fl and micro-f1 is very
large, which is caused by the imbalance of various node types.



192 Q. Baiet al.

0957 v v v v v v v v v v v 1.04
0.90 4
L
0851 e —9o o oo oo = 0.6
S :
S 0.54
<¢ 0.804 g
0.4
0.754
0.3+
0.70
0.2 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
o [
—=— Enron —e— Tokyo —4— DBLP —v— MovieLens —=—Enron —&— Tokyo —4&—DBLP —v— MovieLens
(a) (b)
0.95+ 1.0
0.90
0.9 \
0.85+
) & 0.8 \,7, - .
=) 0.80+ =] ~ Sy
< 2 071 \
0.754 : \
0.70 0.6 v
ot N e
0.60 T T T T T T 0.3 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
—=— Enron —®— Tokyo —&— DBLP —v— MovieLens —=— Enron —®— Tokyo —#— DBLP —v— MoviecLens
(©) (d)

Fig. 4. The influence of parameters « and /3 for two experimental tasks in four datasets: (a) a for
temporal link prediction, (b) « for node classification, (c) 3 for temporal link prediction, (d) 3
for node classification. The X-axis represents values of o and /3, while the Y-axis represents AUC
for temporal link prediction task and micro-f1 for node classification task. Best viewed in color.
(Color figure online)

5.3 Parameter Analysis

We also analyze the influence of parameters « and 3 for two experimental tasks in four
datasets. As Fig. 4 shows, no matter for temporal link prediction or node classification,
datasets with multiple types of nodes (e.g. Enron) are more affected by a while those
with fine temporal granularity (e.g. MovieLens) are more affected by 3, which con-
forms to the control of random walk strategy. According to our experience, in temporal
link prediction, both v and /3 are expected to be a larger value except 1 because this
may lead to overly constraints and stop the random walk process too early. While in
node classification, « = 1 could keep random walks staying at the same type of nodes
and strengthen the relations among them, which is especially important in multi-class
classification tasks.

5.4 Visualizations

We further study the visualizations of all nodes. Figure 5 shows the embedding layouts,
which are projected to 2 dimensions from 128 by t-SNE, on dataset MovieLens for
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Fig. 5. The visualizations of all baselines and H*TNE for node classification task in MovieLens.
Different colors refer different types of nodes. Best viewed in color. (Color figure online)

eleven baselines and our proposed HTNE. Different colors refer different types of
nodes. Obviously our method has the best capacity of discriminating different node
types compared with other models.

6 Conclusion

In this paper, we propose a hyperbolic temporal HIN embedding model H*TNE based
on the power-law distribution of real-world networks. HTNE first leverages a tempo-
rally and heterogeneously double-constrained random walk strategy and then embeds
nodes in achieved random walks into a hyperbolic space. Extensive experimental results
prove the superior performance of our model.

Supplemental Material Statement: Section5.1 has provided the detailed experimen-
tal hardware and software environments, parameter settings and provenances of all
datasets. Source code is available from https://github.com/TaiLvYuanLiang/H2TNE.
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