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Abstract. Entity alignment is a basic and vital technique in knowledge
graph (KG) integration. Over the years, research on entity alignment has
resided on the assumption that KGs are static, which neglects the nature
of growth of real-world KGs. As KGs grow, previous alignment results
face the need to be revisited while new entity alignment waits to be dis-
covered. In this paper, we propose and dive into a realistic yet unexplored
setting, referred to as continual entity alignment. To avoid retraining an
entire model on the whole KGs whenever new entities and triples come,
we present a continual alignment method for this task. It reconstructs an
entity’s representation based on entity adjacency, enabling it to generate
embeddings for new entities quickly and inductively using their existing
neighbors. It selects and replays partial pre-aligned entity pairs to train
only parts of KGs while extracting trustworthy alignment for knowledge
augmentation. As growing KGs inevitably contain non-matchable enti-
ties, different from previous works, the proposed method employs bidi-
rectional nearest neighbor matching to find new entity alignment and
update old alignment. Furthermore, we also construct new datasets by
simulating the growth of multilingual DBpedia. Extensive experiments
demonstrate that our continual alignment method is more effective than
baselines based on retraining or inductive learning.

Keywords: Knowledge graphs · Continual entity alignment ·
Representation learning

1 Introduction

Entity alignment, also known as entity matching or entity resolution [22], has been
a long-standing research topic in the Semantic Web and Database communities.
The task aims at matching the identical entities with different URIs in different
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Fig. 1. Illustration of continual entity alignment. Given two pre-aligned entity pairs
(e11, e

1
2) and (e21, e

2
2) between KG1 and KG2, we expect to find the identical counterparts

for e31 and e41. At time t, due to the incompleteness of both KGs, e31 can be falsely
matched to a wrong entity, and the expecting counterpart of e41 does not even appear
yet. At time t + 1, as new triples emerge over time, e31 and e41 gain more chance to be
correctly matched with richer supportive information.

knowledge graphs (KGs). For example, two entities http://dbpedia.org/resource/
Hangzhou and http://zh.dbpedia.org/resource/杭州 from DBpedia [13] in differ-
ent languages both refer to the same Chinese city, Hangzhou, which is the venue of
ISWC 2022 conference. Early studies [11,22] mainly explore the literal similarities
with probabilistic or semantic inference to match entities. However, these meth-
ods are hampered by the symbolic heterogeneity of different KGs, particularly the
cross-lingual KGs. To resolve this issue, recent embedding-based methods strive
to construct a unified vector space to represent different KGs, with entity embed-
dings used to infer entity similarity [24]. Furthermore, the embeddings from the
unified space built by aligning various KGs are shown to be useful for downstream
tasks, such as cross-lingual knowledge transfer and multi-lingual KG completion
[7,20]. Thus, as a backbone of knowledge fusion and transfer, embedding-based
entity alignment has received increasing attention [28,41,42].

However, existing embedding-based entity alignment methods assume an ide-
alized scenario of static KGs, neglecting many real-world difficulties like align-
ment incompleteness, KG growth, and alignment growth. In this paper, we argue
that entity alignment is not a one-time task. We propose and study a new set-
ting, i.e., continual entity alignment, between growing and incomplete KGs. Our
motivation comes from the growth and incompleteness nature of real-world KGs.
For example, the release bot of DBpedia [13] extracts about 21 billion new triples
per month [10], and Wikidata [30] releases data dumps in a weekly cycle.1 The
new entities and triples bring about new alignment to be found and provide new
clues for correcting the previous alignment. Figure 1 presents an illustration.

This real scenario poses new challenges to embedding-based entity alignment.
The first challenge is how to learn embeddings for the new entities in an effective
and efficient manner. When KGs grow, the pre-trained entity alignment model
sees new entities for the first time, as new triples bring structural changes to KGs.

1 https://dumps.wikimedia.org/wikidatawiki/entities/.

http://dbpedia.org/resource/Hangzhou
http://dbpedia.org/resource/Hangzhou
https://dumps.wikimedia.org/wikidatawiki/entities/
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To handle new entities, retraining the model from scratch is costly. Also, induc-
tive entity embedding is less adaptable to changes of structure. Thus, it requires
non-trivial updates of the pre-trained model to incorporate new entities and new
triples. The second challenge is how to capture the potential alignment of both old
and new entities. In real cases, KGs always contain unknown non-matchable enti-
ties [23], which necessitates a more reliable alignment retrieval strategy than sim-
ply ranking candidates from test sets. Furthermore, as new entities typically are
few-linked [2], capturing the potential alignment for new entities becomes more
difficult. The third challenge is how to integrate the old predicted alignment with
the new predictions. In our setting, we output alignment results each time the KGs
grow. The old and new alignment inevitably have conflicts. We need an effective
integration strategy to combine them and update the final alignment.

As the first attempt to address these challenges, we propose a continual entity
alignment method ContEA. Our key idea is to finetune the pre-trained model
to incorporate new entities and triples, meanwhile capturing the potential entity
alignment. Specifically, we use Dual-AMN [16], a prominent alignment model,
as our basal encoder. To enable it to effectively handle new entities, we design
an entity reconstruction objective, which allows the encoder to generate entity
embeddings using solely neighboring subgraphs. To retrieve alignment from the
embedding space, we propose a bidirectional nearest neighbor search strategy.
Two entities are predicted to be aligned if and only if they are the nearest
neighbors to each other. When new entities and triples emerge, ContEA finetunes
the pre-trained model according to the changed structures. To capture potential
entity alignment, we replay partial pre-known alignment to avoid knowledge
oblivion and select high-confidence predictions for knowledge augmentation.

To support the research on this new and practical task, we build three new
datasets based on the widely-used benchmark DBP15K [24], which contains
three cross-lingual datasets, i.e., ZH-EN, JA-EN and FR-EN. For each dataset,
we construct six snapshots (i.e., t = 0, 1, 2, 3, 4, 5) by adding new entities and
new triples into the preceding snapshot, to simulate KGs’ growth. We conduct
extensive experiments on our datasets. Our method outperforms strong baselines
that use retraining or inductive embedding techniques while at a lower time cost.
Our datasets and source code are publicly available to foster future research.

2 Problem Statement

We define a KG as a 3-tuple G = {E ,R, T }, where E and R denote the sets of
entities and relations, respectively. T ⊆ E ×R×E is the set of relational triples.
Given two KGs G1 = {E1,R1, T1} and G2 = {E2,R2, T2}, entity alignment aims
to identify entities in G1 and G2 that refer to the same real-world object, i.e.,
seeking a set of alignment A = {(e1, e2) ∈ Es×Et | e1 ≡ e2}, where “≡” indicates
equivalence. A small set of seed entity alignment As ⊂ A is usually provided as
anchors (i.e., training data) beforehand to help align the remaining entities.

From time to time, new triples emerge and are added into KGs, which brings
KGs’ size growth. We propose the definition of growing KGs as follows:



Facing Changes: Continual Entity Alignment for Growing Knowledge Graphs 199

Definition 1 (Growing knowledge graphs). A growing KG G is a sequence
of snapshots G = (G0,G1, . . . ,GT ), where the superscript numbers denote dif-
ferent timestamps. For any two successive timestamps Gt = {Et,Rt, T t} and
Gt+1 = {Et+1,Rt+1, T t+1}, there exist Et ⊆ Et+1, Rt = Rt+1 and T t ⊆ T t+1.

In this definition, each newly added triple in ΔT t+1 between t and t + 1
contains zero, one, or two new entities. Considering that the set of relations in
KGs is much less diverse than that of entities, we dismiss the emergence of new
relations in this paper and assume that the relations in KGs are pre-defined.

To practice entity alignment on growing KGs. We propose the task of con-
tinual entity alignment and give its definition below:

Definition 2 (Continual entity alignment). Given two growing KGs G1 and
G2, and the seed entity alignment As at time t = 0, continual entity alignment
at time t aims to find potential entity alignment At

p between Gt
1 and Gt

2 based on
the currently learned KG embeddings and alignment model.

In this definition, the size of As is constant, while At
p grows over time as

new entities may bring new entity alignment to be found. Considering that the
seed entity alignment is usually deficient and difficult to obtain [21], we do not
assume that new snapshots bring new seed alignment to augment training data.
That is to say, As of snapshot at time t > 0 is the same as that at time t = 0.

3 Methodology

In this section, we introduce the proposed continual entity alignment method
ContEA. Figure 2 depicts its framework. It consists of two modules: the
subgraph-based entity alignment module, and the embedding and alignment
update module. The following is a brief overview of them:

– In the subgraph-based entity alignment module, the input is the two KGs
at time t = 0 and the seed entity alignment across them. A graph neural
network (GNN) is employed over the two KGs to represent entities based on
their subgraph structures. The alignment learning objective is to minimize the
embedding distance of similar entities while separating dissimilar ones. Addi-
tionally, an entity reconstruction design is used to encourage entities similar
to their contexts. When the learning process is completed, the trustworthy
alignment is predicted based on bidirectional nearest neighbor search.

– At time t > 0, the embedding and alignment update module first incorpo-
rates new entities into previously learned KG embeddings. It reconstructs new
entities’ embeddings based on their neighborhood subgraphs. Then, partial
seed entity alignment and trustworthy alignment predicted in the previous
snapshot are used for finetuning the GNN model. Last, after new alignment
is predicted, we use it to update the previously-found old alignment.

We introduce the details of the two modules in the following two subsections.
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Fig. 2. Framework of the proposed continual entity alignment method ContEA.

3.1 Subgraph-Based Entity Alignment

This module is built upon a GNN that represents an entity by aggregating its
neighborhood subgraph. The key assumption behind GNN is that the entities
with similar neighborhoods appear to be close, which makes GNNs extensible
to represent new entities. Please note that we do not focus on how to develop a
powerful GNN for entity alignment, but on how to incorporate new entities and
triples in an effective and efficient manner for continual entity alignment.

Subgraph Encoder. We adopt the GNN-based encoder of Dual-AMN [16] as
our subgraph encoder for its effectiveness and simplicity. The encoder of Dual-
AMN consists of an inner-graph layer (namely Aggregator1) capturing the struc-
tural information within a single KG, and a cross-graph layer (Aggregator2) cap-
turing cross-graph matching information based on the outputs of Aggregator1.
Technically, Aggregator1 is a 2-layered relation-aware GNN, and Aggregator2 is
a proxy attention network connecting entities with a list of proxy nodes. Overall,
given an entity e, its representation after being encoded by Dual-AMN is

Encoder(e) = Aggregator2
(
Aggregator1(e,Ne), Eproxy

)
, (1)

where Aggregator1() aggregates the entity itself and its relational neighbors Ne

to generate its embedding, and Aggregator2() combines the output embeddings
with proxy nodes Eproxy to generate the final representations of entities. To save
space, we do not present the detailed techniques of Dual-AMN here. Interested
readers can refer to its original paper [16] for more details.

Entity Reconstruction. As KGs grow, the pre-trained GNN encoder encoun-
ters new entities and triples. The critical challenge is how to incorporate unseen
entities into the encoder. Randomly initializing the embeddings of new entities
could be detrimental to the previously optimized embedding space and cause
representation inconsistency. A typical assumption in embedding-based entity
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alignment is that two entities are similar if their neighborhood subgraphs are
similar (i.e., the two subgraphs have similar or pre-aligned entities). Motivated
by this, we propose a self-supervised learning objective that enables the encoder
to reconstruct an entity using its neighborhood subgraphs:

Lreconstruct =
∑

e∈E

∥
∥
∥
∥
∥
e − 1

|Ne|
∑

e′∈Ne

e′
∥
∥
∥
∥
∥

2

2

. (2)

Here, Ne denotes the set of one-hop neighbors of e. This objective minimizes
the distance between an entity and its neighbor subgraph embedding (the mean
vector of all neighbor embeddings).

Alignment Learning. Given the outputs of the encoder, alignment learning
aims to gather similar entity pairs and distance dissimilar entity pairs. The dis-
similar entity pairs is modeled by negative sampling. Following Dual-AMN [16],
we also adopt the LogSumExp function to compute the loss:

Lalign = log
[
1+

∑

(e1,e2)∈As

∑

(e1,e′
2)∈Aneg

e1

exp
(
γ(λ+sim(e1, e2)−sim(e1, e′

2))
)]

, (3)

where Aneg
e1 denotes the negative alignment generated for entity e1. γ is a scale

factor, and λ is the margin for separating the similarities of seed alignment
pairs and negative pairs. Cosine is used to compute embedding similarity, i.e.,
sim(e1, e2) = cos(Encoder(e1), Encoder(e2)). We employ the in-batch negative
generating method. Specifically, for entity e1, other entities (e.g., e′

2) in a train-
ing batch act as its negative counterparts to generate the negative pairs Aneg

e1 .
The final learning objective of subgraph-based entity alignment module L1 is a
combination of Lalign and Lreconstruct with a weight α on Lreconstruct:

L1 = Lalign + α · Lreconstruct. (4)

Trustworthy Alignment Search. After the alignment learning is complete,
we retrieve trustworthy entity alignment as predictions based on the optimized
embedding space. Previous embedding-based entity alignment methods assume
that each entity in one KG must have a counterpart in the other KG. A typical
inference process is the nearest neighbor search, i.e., it seeks

ê2 = arg min
e2∈E2

π(Encoder(e1), Encoder(e2)), (5)

where π() is a measure for alignment search, and ê2 is the predicted counterpart
for e1. However, such an “idealized” assumption may not stand in a realistic
setting as there are many no-match entities in the two KGs [23]. To resolve this
issue and improve alignment search, we propose a parameter-free strategy called
bidirectional nearest alignment search. It searches for the nearest neighbor in
one KG for the entities in the other. An alignment pair (e1, e2) is a trustworthy
alignment if and only if e2 = ê2 and e1 = ê1. Other alignment pairs are discarded.
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3.2 Embedding and Alignment Update

At time t > 0, the relational structure of KGs get changed as new triples come.
It needs to generate embeddings for new entities while capturing the structure
changes. To resolve this challenge, we propose to finetune the GNN encoder and
new entity embeddings with partial seed alignment and selected trustworthy
alignment. After finetuning, the new trustworthy entity alignment is retrieved
based on the updated model and embeddings. The new predicted alignment is
used to complete and update the old alignment discovered at time t − 1 using a
heuristic strategy.

Encoder Finetuning. We initialize the encoder with the parameters learned
in the previous module/time. Thanks to our entity reconstruction objective, the
encoder is able to initialize the embedding of a new entity e as follows:

Encoder(e) = Aggregator2
(
Aggregator1(MP(N ′

e)), Eproxy

)
, (6)

where N ′
e denotes the seen neighbors of the new entity e. MP() is mean-pooling

process to generate embedding for e using N ′
e.

Based on the output embeddings of new and existing entities, we finetune the
GNN encoder. Specifically, we freeze the inner-graph layer Aggregator1 while
make the cross-graph Aggregator2 learnable. For a single KG, the coming of
new data does not change the neighbor aggregation pattern, as a KG’s schema
stays consistent (no new relations or entity domains). But the two KGs grow
independently and asymmetrically in the proposed scenario. It is necessary to
fine-tune the matching network to make adjustments and new discoveries.

For training data, considering that the potential entity alignment is more likely
to occur near anchors [37], we replay only the affected seed entity alignment that
contains anchors involved in new triples. This helps the alignment of new entities,
which is originally difficult due to their low degrees. Also, to help align entities from
wider and more dynamic areas, we select top-m predicted trustworthy alignment
with the highest similarity scores and treat them as “new anchors”.

We finetune the GNN encoder and new entity embeddings on the obtained
affected seed alignment (ASA for short) and m selected trustworthy alignment
(TA for short). We use a weight β on the learning loss over m trustworthy
alignment to balance its importance. The final loss function L2 of finetuning is

L2 = Lalign(ASA) + α · Lreconstruct + β · Lalign(TA). (7)

Trustworthy Alignment Update. After finetuning, a new set of trustworthy
alignment can be retrieved using the updated entity embeddings and model. It
is necessary to combine it with the previously discovered trustworthy alignment
because they are gathered from different snapshots and may complement each
other to produce superior outcomes. Here, we carry out a heuristic strategy to
integrate them. We keep new trustworthy alignment which is between two new
entities. But for new ones that cause alignment conflicts [25] with the previous
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Algorithm 1: Process of ContEA
Input : Two growing KGs Gt

1 and Gt
2 at time t, prior learned knowledge K

(none for t = 0), seed alignment As, previous trustworthy alignment
TA (none for t = 0), hyperparameters α, β;

Output: Updated trustworthy alignment TA;
1 if t = 0 then
2 Training encoder on G0

1 and G0
2 using L1 loss in Eq. (4);

3 Generating TA though trustworthy alignment search;

4 else
5 Initializing embeddings and encoder parameters using K, Gt

1 and Gt
2;

6 Selecting affected As as ASA and top-m TA with highest similarity;
7 Finetuning encoder using L2 loss in Eq. (7);
8 Updating TA with new trustworthy alignment;

trustworthy alignment (i.e., an entity is aligned with different entities), we decide
to keep the alignment that has higher similarity scores. With KGs growing, the
size of trustworthy entity alignment is accumulative.

3.3 Put It All Together

Algorithm 1 describes the training and finetuning details of ContEA for continual
entity alignment. Lines 1–3 describe the process of the subgraph-based entity
alignment module at time t = 0. Lines 4–8 describe the process of embedding
and alignment updating modules at time t > 0.

4 Experiments

4.1 New Datasets for Continual Entity Alignment

Due to the lack of off-the-shelf benchmarks for proposed setting, we construct new
datasets based on DBP15K [24]. For each DBP15K’s cross-lingual entity align-
ment dataset, we use its two KGs as the first snapshots (i.e., t = 0). DBP15K
only considers entity alignment between the head entities of triples and overlooks
other entity alignment pairs. Hence, we first complete the reference entity align-
ment using the inter-language links in DBpedia2, resulting in more than 15K ref-
erence alignment pairs in the first snapshot. Then, the reference entity alignment
is divided into training, validation and test sets (i.e., As, Av and A0

p) with a ratio
of 2 : 1 : 7. We further build five snapshots to simulate KGs’ growth:

– At time t > 0, we first collect the relation triples from DBpedia that contain
entities in Gt−1

1 and Gt−1
2 . Then, among these triples we remove seen ones at

time t−1, and sample new triples from the remaining with the size of 20% of
the triples in previous snapshots. Adding the new triples into Gt−1

1 and Gt−1
2

and we create snapshots Gt
1 and Gt

2.

2 We use the infobox-based relation triples (version 2016-10) following DBP15K.
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Table 1. Statistics of the three datasets. Each consists of two growing KGs in six
snapshots from consecutive timestamps. In a snapshot, |T | is the current triple size,
and |As|, |Av|, |Ap| are the sizes of training, validation and test alignment, respectively.

DBPZH-EN DBPJA-EN DBPFR-EN

|T |ZH |T |EN |As| |Av| |Ap| |T |JA |T |EN |As| |Av| |Ap| |T |FR |T |EN |As| |Av| |Ap|
t = 0 70,414 95,142 3,623 1,811 12,682 77,214 93,484 3,750 1,875 13,127 105,998 115,722 3,727 1,863 13,048

t = 1 103,982 154,833 3,623 1,811 14,213 112,268 150,636 3,750 1,875 15,079 148,274 184,132 3,727 1,863 15,875

t = 2 137,280 213,405 3,623 1,811 16,296 147,097 207,056 3,750 1,875 18,092 191,697 251,591 3,727 1,863 20,481

t = 3 173,740 278,076 3,623 1,811 18,716 185,398 270,469 3,750 1,875 21,690 239,861 326,689 3,727 1,863 25,753

t = 4 213,814 351,659 3,623 1,811 21,473 227,852 341,432 3,750 1,875 25,656 293,376 411,528 3,727 1,863 31,564

t = 5 258,311 434,683 3,623 1,811 24,678 274,884 421,971 3,750 1,875 29,782 352,886 507,793 3,727 1,863 37,592

– Then, we complete Gt
1 and Gt

2 by adding additional relation triples from DBpe-
dia of which the head and tail entities are both in the snapshots, leading to
more than 20% growth of triple size.

– Finally, we retrieve the new entity alignment pairs brought by the newly
added entities, and add them into the test set At

p of snapshot t. The training
set As or validation set Av still follows that in the first snapshot at time
t = 0. We do not assume that the new snapshot introduces new training
data because obtaining seed alignment for emerging entities is usually more
difficult than finding seed alignment for old entities in the real world.

The detailed statistics of our dataset are present in Table 1.

4.2 Baselines

We compare ContEA with two groups of entity alignment methods.

– Retraining baselines. Since most existing embedding-based EA methods
are designed for static KGs, they need retraining each time new triples come.
Here, we choose the representative translation-based method MTransE [6],
and several state-of-the-art GNN-based methods, including GCN-Align [33],
AlignE [25], AliNet [27], KEGCN [40] and Dual-AMN [16] as our baselines.

– Inductive baselines. The only entity alignment method focusing on KGs’
growth is DINGAL [39]. We choose one of the proposed variants, DINGAL-
O, as a baseline, which can handle our scenario. Additionally, since there are
some inductive KG embedding (KGE) methods which can generate embed-
dings for new entities, we explore their combination with static methods to
tackle our task. Here, we select two representative inductive KGE methods
MEAN [8] and LAN [31] as the entity representation layer and incorporate
them with Dual-AMN. We denote the two baselines by MEAN+ and LAN+.

4.3 Experiment Settings

Evaluation Metrics. At each time t, the bidirectional nearest neighbor search
and alignment integration are used to obtain the final trustworthy alignment.
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The details are described in Sect. 3.1 and Sect. 3.2. Then, we compare the final
trustworthy alignment with gold test pairs At

p. We report the precision, recall,
and F1 scores as the evaluation metrics.

Implementation. We implement ContEA, Dual-AMN, MEAN+ and LAN+

using PyTorch. For other retraining baselines, we use the implementations in an
open-source library.3 We set the embedding dimensions to 100. The embedding
similarity metric is CSLS [12]. We use grid search on hyperparameters and early
stop to find the best performance. Specifically for ContEA, we set α = 0.1,
β = 0.1 and m = 500. More detailed hyperparameter settings can be found on
our GitHub repository. For a fair comparison, all baselines only rely on KGs’
structural information and do not use pre-trained models for initialization.

4.4 Results

General Results. We conduct experiments on the constructed datasets and
present the results in Tables 2, 3 and 4. Compared with baselines, ContEA
reaches the best performance in discovering potential entity alignment. Its F1
scores outperform the best baseline Dual-AMN by 27.1%, 19.4%, and 15.2%
averagely on six snapshots of DBPZH-EN, DBPJA-EN, and DBPFR-EN, respec-
tively. The superior performance of ContEA over retraining methods is because
ContEA can iteratively leverage the prior knowledge (e.g., previously predicted
alignment and model parameters) from the past snapshots. Also, ContEA col-
lectively obtains predicted entity alignment by integrating new and old trust-
worthy alignment rather than totally neglecting old predictions in retraining. As
for inductive baselines, MEAN+ and LAN+ perform worse than ContEA and
Dual-AMN, which indicates that straightway adding the inductive KGE layer
without adjusting the alignment network does not give satisfactory performance.
DINGAL-O also shows unsatisfactory results, because it is purely inductive and
does not update the alignment network. Besides, we can notice that the per-
formance of all methods declines over time. This is due to the expansion of the
searching space for alignment candidates, and the drop in the ratio of seed align-
ment against to-be-aligned alignment. Both of these increase the probability of
entities being mismatched.

Ablation Study. To investigate the impact of each design of ContEA, also to
give a fairer comparison between ContEA and baselines, we discard certain parts
of ContEA and present three variants as follows:

– ContEA w/o TA. In the finetuning process, we discard the selected trustwor-
thy entity alignment and only train on the affected seed alignment.

– ContEA w/o TA & ASA. We discard both the selected trustworthy alignment
and the affected seed alignment. Thus, our method requires no finetuning and
reduces to an inductive method. The entity reconstruction method generates
embeddings for new entities using their neighbors.

3 https://github.com/nju-websoft/OpenEA.

https://github.com/nju-websoft/OpenEA
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Table 2. Results of entity alignment on DBPZH-EN. NA stands for not applicable.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1

Retraining MTransE .552/.178/.269 .242/.111/.152 .159/.078/.105 .094/.054/.068 .080/.041/.055 .049/.030/.037

GCN-Align .550/.249/.343 .212/.152/.177 .133/.115/.123 .096/.091/.094 .076/.075/.076 .062/.062/.062

AlignE .721/.364/.484 .382/.272/.317 .282/.222/.248 .206/.173/.188 .191/.152/.169 .127/.112/.119

AliNet .641/.358/.459 .285/.311/.297 .195/.279/.230 .146/.244/.183 .129/.232/.166 .105/.199/.128

KEGCN .664/.200/.308 .315/.129/.183 .198/.093/.127 .160/.075/.102 .136/.064/.087 .120/.052/.072

Dual-AMN .834/.596/.695 .482/.443/.462 .357/.356/.356 .285/.286/.286 .249/.254/.251 .227/.227/.227

Induct. MEAN+ .828/.576/.679 .483/.422/.450 .357/.341/.349 .267/.264/.265 .225/.226/.225 .198/.197/.198

LAN+ .827/.576/.679 .488/.426/.455 .360/.345/.352 .274/.271/.272 .231/.229/.230 .205/.199/.202

DINGAL-O .497/.195/.280 .370/.158/.222 .315/.135/.189 .251/.111/.154 .229/.093/.132 .209/.080/.116

ContEA .843/.604/.703 .555/.539/.546 .444/.473/.458 .373/.421/.396 .324/.375/.348 .291/.336/.312

w/o TA NA / NA / NA .543/.531/.537 .419/.469/.443 .357/.414/.384 .316/.371/.341 .286/.332/.307

w/o TA & ASA NA / NA / NA .543/.527/.535 .422/.463/.442 .352/.410/.379 .309/.365/.335 .278/.324/.300

Retraining NA / NA / NA .493/.455/.473 .364/.357/.361 .300/.301/.301 .265/.266/.265 .245/.240/.243

Table 3. Results of entity alignment on DBPJA-EN. NA stands for not applicable.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1

Retraining MTransE .599/.200/.299 .293/.121/.172 .213/.082/.118 .151/.061/.087 .128/.046/.067 .117/.035/.054

GCN-Align .594/.279/.379 .263/.183/.216 .177/.142/.158 .140/.117/.127 .116/.099/.107 .099/.084/.091

AlignE .738/.359/.483 .433/.282/.342 .320/.218/.260 .270/.178/.214 .228/.148/.180 .193/.122/.149

AliNet .661/.364/.469 .305/.312/.308 .216/.270/.240 .167/.231/.194 .149/.215/.176 .126/.189/.151

KEGCN .663/.198/.305 .389/.153/.219 .280/.110/.157 .245/.087/.128 .200/.070/.104 .194/.063/.096

Dual-AMN .861/.606/.711 .517/.437/.474 .398/.347/.370 .348/.292/.318 .313/.251/.278 .300/.231/.261

Induct. MEAN+ .847/.571/.682 .528/.420/.468 .407/.330/.365 .330/.261/.292 .287/.221/.250 .265/.193/.223

LAN+ .845/.575/.684 .528/.424/.470 .410/.333/.368 .335/.265/.296 .296/.226/.257 .274/.200/.231

DINGAL-O .540/.227/.320 .391/.174/.241 .328/.137/.194 .271/.113/.159 .249/.092/.134 .231/.078/.116

ContEA .858/.610/.713 .586/.519/.551 .483/.440/.461 .417/.381/.398 .375/.336/.354 .344/.299/.320

w/o TA NA/NA/NA .572/.518/.544 .466/.439/.452 .398/.377/.387 .357/.332/.344 .333/.294/.312

w/o TA & ASA NA/NA/NA .580/.514/.545 .466/.436/.450 .399/.374/.386 .359/.328/.343 .331/.291/.310

Retraining NA/NA/NA .530/.449/.486 .415/.356/.383 .369/.298/.330 .349/.272/.306 .327/.244/.280

Table 4. Results of entity alignment on DBPFR-EN. NA stands for not applicable.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

P / R / F1 P / R / F1 P /R / F1 P /R / F1 P /R/ F1 P /R/ F1

Retraining MTransE .570/.188/.283 .246/.100/.142 .145/.062/.087 .108/.040/.059 .104/.032/.049 .073/.024/.036

GCN-Align .561/.262/.357 .233/.161/.190 .148/.111/.127 .113/.086/.098 .089/.066/.076 .077/.056/.065

AlignE .757/.394/.518 .399/.274/.325 .305/.202/.243 .245/.154/.189 .210/.121/.154 .195/.104/.136

AliNet .653/.361/.465 .275/.289/.282 .187/.226/.205 .144/.180/.160 .124/.155/.138 .115/.138/.126

KEGCN .716/.214/.330 .344/.125/.184 .260/.090/.134 .237/.076/.115 .201/.058/.089 .169/.045/.071

Dual-AMN .862/.629/.727 .503/.443/.471 .394/.331/.359 .351/.273/.307 .322/.237/.273 .313/.214/.254

Induct. MEAN+ .840/.585/.690 .514/.415/.459 .387/.305/.341 .314/.235/.269 .273/.191/.225 .254/.169/.203

LAN+ .845/.594/.697 .506/.410/.453 .379/.300/.335 .304/.227/.260 .269/.188/.222 .247/.162/.195

DINGAL-O .540/.224/.317 .381/.165/.231 .329/.124/.180 .258/.092/.136 .247/.073/.112 .227/.061/.096

ContEA .866/.634/.732 .569/.520/.543 .453/.421/.436 .387/.351/.369 .351/.301/.324 .325/.265/.292

w/o TA NA/NA/NA .559/.516/.537 .443/.417/.430 .379/.348/.363 .342/.299/.319 .315/.263/.287

w/o TA & ASA NA/NA/NA .548/.511/.528 .431/.413/.421 .367/.342/.354 .334/.293/.312 .311/.256/.281

Retraining NA/NA/NA .516/.437/.473 .409/.339/.370 .372/.284/.322 .348/.247/.289 .331/.224/.267

– ContEA retraining. Same as the retraining baselines, ContEA treats each
snapshot as at t = 0. Old predicted entity alignment is totally replaced by
newly predicted entity alignment rather than being integrated.
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Table 5. Recall of the alignment containing
new entities on DBPZH-EN.

t = 1 t = 2 t = 3 t = 4 t = 5

Retraining MTransE .075 .055 .032 .023 .013

GCN-Align .049 .031 .028 .014 .012

AlignE .137 .099 .067 .057 .040

AliNet .148 .149 .118 .124 .085

KEGCN .059 .046 .026 .026 .021

Dual-AMN .204 .164 .128 .113 .094

Induct. MEAN+ .170 .142 .106 .098 .078

LAN+ .167 .140 .109 .095 .076

DINGAL-O .003 .007 .007 .008 .006

ContEA .205 .167 .140 .116 .095
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Fig. 3. Size growth of predicted correct
alignment on DBPZH-EN.

We show the results of three variants in Tables 2, 3 and 4. The variants
inherit the trained ContEA at t = 0 and perform respectively afterwards. We can
notice a performance drop when discarding selected trustworthy alignment. Big-
ger declines are seen if further dropping the affected seed alignment. This demon-
strates the effectiveness of both selected trustworthy alignment and affected seed
alignment replay. For ContEA retraining, though it performs much worse than
ContEA, it still outperforms all retraining baselines, including Dual-AMN, which
indicates the effectiveness of entity reconstruction.

Discovering New Alignment. Next, we present the performance of ContEA
on discovering alignment for new entities. At time t = {1, 2, 3, 4, 5}, we collect the
final predicted alignment that involves new entities, and calculate the recall value
by comparing it with the gold test alignment containing new entities. We show
the results on DBPZH-EN in Table 5. ContEA reaches the highest recall against all
baselines, which indicates the advantage of our method in discovering alignment
for new entities. We can also notice that the recalls on gold alignment about new
entities are significantly lower than those on all gold alignment. This is because
new entities tend to be sparsely-linked, which hinders the alignment models from
matching them correctly. Also, Fig. 3 illustrates the growth of the total correctly
predicted alignment of ContEA. At time t, the size of total correctly predicted
alignment is calculated as |At

p| × Recall (R in Table 2). The results show that
ContEA can find an increasing size of correct entity alignment as KGs grow,
which fulfills the proposal of continual entity alignment.

Efficiency. We compare the training efficiency of ContEA with retraining base-
lines. Note that, since inductive baselines have no training process as new triples
come, we do not include them here. We run all experiments on a server outfitted
with 512 GB memory, two Xeon Gold 6326 CPUs, and four RTX A6000 GPUs.
Figure 4 depicts the average time cost on three datasets at different snapshots.
We set the ceiling of vertical axis to 2,000 s for better presentation. We can
see that ContEA has significantly less training time, which shows a part of its
superiority in tackling the continual entity alignment task.
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Fig. 4. Time cost comparison of ContEA and retraining baselines. We report the aver-
age time cost on the three datasets.

Table 6. F1 results comparison when incorporating name attribute of entities.

DBPZH-EN DBPJA-EN DBPFR-EN

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Google Translate .550 .504 .473 .451 .434 .420 .677 .635 .617 .595 .587 .586 .749 .685 .658 .645 .636 .627

ContEA (fasttext) .709 .556 .471 .411 .367 .334 .754 .615 .521 .456 .409 .374 .780 .613 .510 .446 .404 .368

ContEA ∪ G.T .826 .645 .571 .506 .466 .441 .886 .742 .677 .637 .612 .604 .892 .740 .682 .650 .633 .623

4.5 Further Analysis

Incorporating Entity Names. Here we explore the advantage of leveraging
entities’ names. Practically, we use fasttext library to generate name embed-
dings for entities. Since the original word embedding dimension of fasttext is
300, to make the embedding space scalable, we reduce the dimension to 100 using
the official dimension reducer.4 Also, we involve Google Translate5 (G.T.) as a
competing method. For a cross-lingual dataset, we first translate entities from
two KGs into the same language (both in English or non-English), and then
calculate name similarity using Levenshtein distance, a popular measurement
in linguistics [18] and ontology matching [4]. The bidirectional nearest neighbor
search is also used later to obtain predicted trustworthy entity alignment, which
are compared with the gold test set to calculate P, R, and F1 scores. We list
the F1 results in Table 6. By utilizing name attributes, ContEA (fasttext) out-
performs ContEA with a large margin. Google Translate gives satisfactory and
robust performance over time, as powerful as expected. It performs more stably
and is less sensitive to KGs’ size, with outperforming ContEA (fasttext) on
most snapshots of the three datasets except the first snapshot.

We further explore the combination of ContEA and Google Translate. To do
so, we combine their predicted alignment when searching the nearest neighbor
from one KG to the other, then take a bidirectional intersection to get the final
combined predicted alignment. The results of this combination are shown in the
last row. We can see that their combination outperforms both Google Translate
and ContEA in almost all snapshots of three datasets. We believe that when
Google Translate fails to align an entity, ContEA can be a practical alternative.
4 https://fasttext.cc/docs/en/crawl-vectors.html.
5 https://translate.google.com/.

https://fasttext.cc/docs/en/crawl-vectors.html
https://translate.google.com/
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Table 7. Case study on previously predicted alignment getting corrected.

t = 0 t = 5

Predicted alignment Sim. Predicted alignment Sim.

DBPZH-EN
(我是歌手, Hunan Television) .204 (湖南卫视, Hunan Television) .530

(呼和浩特市, Baotou) .243 (包头市, Baotou) .541

DBPJA-EN
(スウェーデン語, Finnish language) .210 (フィンランド語, Finnish language) .316

(フランス人, Spaniards) .265 (フランス人, French people) .367

DBPFR-EN
(Révolution française, Réunion) .262 (La Réunion, Réunion) .403

(Stade de Wembley, White Hart Lane) .302 (Stade de Wembley, Wembley Stadium) .380

Case Study on Correcting Previous Alignment. Last, we present several
cases in Table 7 about the previously predicted alignment getting corrected in
later finetuning processes. We save the predicted alignment and their similarity
scores at time t = 0 and t = 5, and juxtapose two alignment pairs from each
time that involve the same entity. We manually check the list of juxtaposition
and notice that the predicted alignment at t = 0 is usually incorrect with smaller
similarity scores, while their counterparts at t = 5 are correct with higher simi-
larity scores. This indicates the ability of ContEA on self-correction. Meanwhile,
the two entities in falsely predicted alignment at t = 0 are not totally irrelevant.
For example, in the second case from the DBPFR-EN dataset, both Stade de
Wembley and White Hart Lane are Stadiums in London. In the first case from
the DBPZH-EN dataset,我是歌手 is a popular TV show made by Hunan Televi-
sion. And in the first case from the DBPJA-EN dataset, スウェーデン語 means
Swedish language (Sweden and Finland are two neighboring Nordic countries).
This gives an interesting insight on how ContEA predicts entity alignment with
slight inaccuracy.

5 Related Work

Static Entity Alignment. Most existing embedding-based entity align-
ment methods focus on static KGs. They can usually be classified into two
categories regarding the techniques of their KG encoders: translation-based
[6,14,19,25,26,43] and GNN-based [16,17,27,33–36]. The former family adopts
translation-based KG embedding (KGE) techniques [3,32] to embed entities,
and map cross-graph entities into a unified space based on pre-aligned entity
pairs. The encoder of GNN-based entity alignment methods learns a shared
neighborhood aggregator to embed entities in different KGs. They have gained
overwhelming popularity in recent years due to their strong ability to capture the
structural information using a subgraph around an entity, rather than a single
triple. For more details, there are several surveys [28,41] that comprehensively
summarize the recent advances.

Dynamic Entity Alignment. As far as we know, DINGAL [39] is the only
entity alignment method that addresses the dynamics of KGs. In its dynamic
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scenario, new triples are added into KGs as well as new pre-known alignment
provided along with these new entities. A variant of DINGAL, named DINGAL-
O, is also proposed in their work to handle a similar setting as ours where the
pre-known alignment does not grow. DINGAL-O is an inductive method that
leverages prior-learned model parameters to predict new alignment. Particularly,
they use name attributes to generate word embeddings for entity initialization.

Inductive Knowledge Graph Embedding. The study on dynamic KG
embedding has drawn lots of attention over the years. Powered by GNN, many
inductive embedding methods for KG completion are proposed to generate
embeddings for new entities. Early inductive methods either focus on semi-
inductive settings where new entities are connected to existing KG and mak-
ing inferences between new entities and existing entities [8,9,31,38], or fully-
inductive settings where new entities form independent graphs and making infer-
ences among new entities [5,29]. Later inductive method [15] intend to tackle
both settings. Meanwhile, some inductive KG embedding methods focus on spe-
cial tasks like few-shot learning [38] and hyper-relational KG completion [1].
Specifically, as the first inductive KG embedding method, MEAN [8] learns to
represent entities using their neighbors by simply mean-pooling the information
of neighboring entity-relation pairs. LAN [31] advances MEAN by incorporating
a rule-based attention and a GNN-based attention on entity-relation pairs in the
pooling process.

6 Conclusion and Future Work

In this paper, considering the growth nature of real-world KGs, we focus on an
entity alignment scenario where both graphs are growing, and address a new
task named continual entity alignment. We propose a novel method ContEA
as a solution to the task. Also, we construct three datasets to imitate the sce-
nario and conduct extensive experiments. The experimental results show the
superiority of ContEA in terms of effectiveness and efficiency against a list of
retraining and inductive baselines. For future work, there are many promising
improvements and extensions to the current proposal. Regarding the setting,
future studies can consider more complex scenarios such as the addition of new
relations, the addition of new pre-known alignment, and even the deletion of
entities and triples. As to the method, more reliable and comprehensive trust-
worthy alignment update strategies are necessary to handle intricate alignment
conflict cases.

Supplemental Material Statement: The source code, detailed hyperparameters,
and constructed datasets are available at our GitHub repository.6
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