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Abstract. Temporal knowledge graphs (TKGs) organize and manage
the dynamic relations between entities over time. Inferring missing
knowledge in TKGs, known as temporal knowledge graph completion
(TKGC), has become an important research topic. Previous models han-
dle all facts with different timestamps in an identical latent space, even
though the semantic space of the TKG changes over time. Therefore, they
are not effective to reflect the temporality of knowledge. To effectively
learn the time-aware information of TKGs, different latent spaces are
adapted for temporal snapshots at different timestamps, which yields a
novel model, i.e., Space Adaptation Network (SANe). Specifically, we
extend convolutional neural networks (CNN) to map the facts with
different timestamps into different latent spaces, which can effectively
reflect the dynamic variation of knowledge. Meanwhile, a time-aware
parameter generator is designed to explore the overlap of latent spaces,
which endows CNN with specific parameters in term of the context of
timestamps. Therefore, knowledge in adjacent time intervals is efficiently
shared to boost the performance of TKGC, which can learn the validity
of knowledge over a period of time. Extensive experiments demonstrate
that SANe achieves state-of-the-art performance on four well-established
benchmark datasets for temporal knowledge graph completion.

Keywords: Temporal knowledge graph · Temporal knowledge graph
completion · Space adaptation · Parameter generation

1 Introduction

Knowledge Graphs (KGs) [1,3] organize and manage knowledge as structured
information in the form of fact triples, which are crucial in various downstream
tasks [14,33]. In KGs, nodes represent entities, and directed edges indicate rela-
tions between entities. Notably, most KGs are inherently incomplete, which moti-
vates research on Knowledge Graph Completion (KGC). KGC aims to infer new
facts from existing facts in KGs and is important to KG field. However, the
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Fig. 1. Existing methods vs. our method. (a) Entities, relations and timestamps are
learned to obtain independent representations [21,23,32,42]. (b) Temporal information
is implicit in entities or relations to generate time-aware representations of entities or
relations [13,41,44]. (c) A concise illustration of our model. Entities and relations are
adapted into specific latent spaces that are produced based on timestamps.

facts are not always time-invariant, and the validity of triples is often time-
aware. Traditional KGC methods are insensitive to temporal information, since
they intuitively assume that triples in KGs are universally true. Therefore, these
methods are not effective to predict the temporal facts.

Temporal Knowledge Graphs (TKGs), including ICEWS [5], YAGO3 [26],
Wikidata [9], etc., are introduced to organize additional temporal aspects of
facts. In TKGs, static triples are associated with timestamps, which reflect the
temporal dynamics of facts in the form of quadruples. Knowledge in a TKG can
be described by the evolution of snapshots over time. However, TKGs also suffer
from incompleteness as with static KGs. Therefore, predicting missing knowledge
with specific timestamps in TKGs, i.e., Temporal Knowledge Graph Completion
(TKGC), has gained growing interest.

Recently, a variety of models have been proposed to handle TKGC. These
models significantly outperform traditional KGC models by capturing the latent
correlation between knowledge and temporal information. Previous works learn
independent representations of entities, relations and timestamps [21,23,32,42]
as shown in Fig. 1(a), or obtain time-aware representations by integrating tem-
poral information into entities and relations [13,41,44] as shown in Fig. 1(b).
These works model variable knowledge in an identical latent space, even though
the semantic space of the TKG changes over time. Therefore, these methods
are not effective to learn the temporality of knowledge. In practice, TKGs can
be decomposed into two components, time-variability and time-stability, which
are intrinsic and critical characteristics in TKGs. Time-variability denotes the
dynamic knowledge which is varied in different snapshots. For example, the pres-
ident of USA was George W. Bush on 2009-01-01, but became Barack Obama
on 2010-01-01. On the other side, time-stability denotes the knowledge which
remains unchanged for a period time. For example, (Barack Obama, presidentOf,
USA) remains valid for a specific period from 2009-01-20 to 2017-01-20. One
of simple yet generic solution of TKGC is to encode the knowledge in different
temporal snapshots into different latent spaces, such that the time-aware infor-
mation at each snapshots can be captured effectively. Meanwhile, there is a part
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of knowledge remains unchanged during a interval. Therefore, knowledge sharing
across adjacent snapshots is also required for knowledge accumulation over time.
However, it is quite challenging to derive a latent space for each snapshot, since
the number of model parameters linearly depend on the number of timestamps.
In addition, how to efficiently gather valid knowledge from different spaces is an
important problem as well.

In response, we propose a novel model named Space Adaptation Network
(SANe) for TKGC as shown in Fig. 1(c). We establish the correlation between
latent spaces and snapshots in terms of parameter generation, i.e., a time-specific
network is produced for each snapshot, such that the facts with different times-
tamps are encoded into different spaces. Specifically, to model time-variability, a
dynamic convolutional neural network (DCNN) is proposed to deal with the enti-
ties and relations with different parameters that are specific to the corresponding
timestamps. Therefore, each temporal snapshot, i.e., knowledge graph with the
same timestamp, is processed in a specific space. Essentially, TKGC is turn into
the static KGC by handling different temporal snapshots in separate spaces.
Thereby, this solution alleviates mutual interference of the knowledge with dif-
ferent timestamps. In addition, we explore how to produce the parameters with
respect to timestamps to ensure time-stability. Thus, a time-aware parameter
generator (TaPG) is designed to constrain the overlap of latent spaces according
to the distance of timestamps, which allows adjacent snapshots to share different
but similar latent spaces. In this way, valid knowledge across multiple snapshots
within a time interval is preserved. The model is experimentally evaluated in
detail on several recent standard benchmarks and achieves state-of-the-art per-
formance compared to existing TKGC methods.

To summarize, our contributions are as follows:

– We propose a novel space adaptation network SANe for TKGC, where differ-
ent latent spaces are adapted for different temporal snapshots. To the best of
our knowledge, this is the first work to implement TKG completion from the
perspective of space adaptation.

– By constraining the overlap of different spaces in terms of time intervals, the
model strikes a balance between learning time-variability and adapting to
time-stability.

– Experimental results on four benchmark datasets with rich temporal infor-
mation demonstrate the superiority of our model1

2 Related Work

In this section, typical methods for static knowledge graph completion and tem-
poral knowledge graph completion are introduced, and research advances on
parameter generation in various fields are briefly reviewed.

Static Knowledge Graph Completion aims to infer missing facts in static
KGs. Previous works can be broadly classified into translational, bilinear, and
1 Our code will be publicly available at https://github.com/codeofpaper/SANe.

https://github.com/codeofpaper/SANe
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neural models. TransE [4] is a well-known translation-based model that regards
relations as translations from head entities to tail entities. Later, several vari-
ants such as TransH [39], TransR [24] and TransD [16] have been proposed to
improve the shortcomings of TransE. Bilinear models, such as RESCAL [29],
ComplEx [37], and TuckER [2], represent relations as linear transformations
acting on entity embeddings, and use bilinear functions to compute plausibility
scores for facts. Neural models, such as ConvE [8], InteractE [38], and RGHAT
[48], complement KGs with nonlinear neural networks and show great effec-
tiveness. The above models have achieved promising results in addressing the
incompleteness of KGs. However, they assume that the facts are static and thus
cannot model the temporality in TKGs. For example, given two quadruples
with timestamps: (Barack Obama, presidentOf, USA, 2010-01-01 ) and (Barack
Obama, presidentOf, USA, 2020-01-01 ), the time-insensitive KGC models will
output the same plausibility scores for these two quadruples. However, the sec-
ond quadruple is invalid. To exploit temporal information to further improve the
performance of KGC models, several studies have been conducted for temporal
knowledge graph completion.

Temporal Knowledge Graph Completion extends KGC to support tem-
poral information. Existing methods for temporal knowledge graph completion
generally fall into two categories. The first line of researches models entities, rela-
tions, and timestamps independently in an identical latent space. TTransE [23],
the variant of TransE [4], incorporates temporal representations into a distance-
based scoring function. TComplEx [21] is a temporal extension of ComplEx [37]
inspired by the canonical decomposition of order 4 tensors and provides a new
regularization scheme. TeLM [42] improves on TComplEx by utilizing a linear
temporal regularizer and multi-vector embeddings to perform 4th-order tensor
factorization of TKGs. ChronoR [32] is a k-dimensional rotation based model
that regards relations with timestamps as temporal rotations from head entities
to tail entities. The another line argues that temporal information should be
implicit in entities or relations, thus learning time-aware representations. ATiSE
[44] incorporates temporal information into entities/relations by using additive
time series decomposition and exploits the covariance of Gaussian distributions
to represent temporal uncertainty. DE-SimplE [13] combines the static KGC
model SimplE [19] with a diachronic embedding function that provides time-
aware representations of entities, and utilizes the same scoring function as Sim-
plE for temporal KGC. TIE [41] is a time-aware incremental embedding frame-
work that combines representation learning, experience replay, and temporal
regularization to improve model performance.

Parameter Generation has been explored in many research fields. Platan-
ios et al. [31] proposed a neural translation model with a contextual parameter
generator to generate parameters used by the encoder and decoder for the cur-
rent sentence based on the source and target languages. N3 [17] generates net-
work parameters for image classification through natural language descriptions
combined with pre-trained models. Nekvinda et al. [28] introduced a multilin-
gual speech synthesis method that uses the meta-learning concept of contextual
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parameter generation to produce natural-sounding multilingual speech. Accord-
ing to our investigation, there is also work on parameter generation for static
knowledge graph completion. CoPER [35] uses the embeddings of relations to
generate model parameters that operate on the embeddings of head entities to
allow for more complex interactions between entities and relations. ParamE [6]
uses neural network parameters as relation embeddings to make the model more
expressive and translational. However, CoPER and ParamE are time-agnostic
and thus cannot capture the temporal dependencies of facts in TKGs.

3 Methodology

A temporal knowledge graph can be represented by a set of quadruples G =
{(h, r, t, τ) |h, t ∈ E , r ∈ R, τ ∈ T }, where E , R, and T are sets of entities, rela-
tions, and timestamps, respectively. Each quadruple represents a time-dependent
fact that a head entity h connects to a tail entity t with respect to the relation r
at the timestamp τ . Given a query (h, r, ?, τ) or (?, r, t, τ), TKGC aims to predict
the missing tail entity t or head entity h based on the observed temporal facts.
For TKGC, we only focus on predicting missing facts at observed timestamps,
i.e., interpolation task [18]. The extrapolation task that predicts future facts is
not considered in this paper.

To tackle the challenges of TKGC, we propose a Space Adaptation Network
(SANe), in which snapshots with different timestamps are adapted for different
latent spaces. As shown in Fig. 2, SANe mainly consists of two modules, i.e., a
Dynamic Convolutional Neural Network (DCNN), and a Time-aware Parame-
ter Generator (TaPG). DCNN encodes entities and relations into different latent
spaces in terms of convolutional layers equipped with different parameters. These
parameters are produced by TaPG according to temporal information. TaPG
transforms the timestamps into a set of DCNN parameters, where the times-
tamps dominate the overlap of multiple latent spaces in DCNN, such that the
valid knowledge is shared across adjacent snapshots. Specifically, we denote by
the d-dimensional vectors h ∈ R

d and r ∈ R
d the head entity and relation respec-

tively. Given a query (h, r, ?, τ), DCNN f predicts the correct tail entity t based
on generated parameters from TaPG g, i.e.,

t = f(h, r; g(τ )), (1)

where g(τ ) is the set of parameters of DCNN f , i.e., θf = g(τ ).

3.1 Dynamic Convolutional Neural Network

Convolutional neural networks (CNN) have shown expressiveness in static KGC
methods [8,38], but have not been extensively explored in existing TKGC meth-
ods. We extend CNN to support TKGC by endowing CNN with specific parame-
ters associated with temporal information. DCNN f consists of several dynamic
convolutional layers and batch normalization, followed by a connected linear
layer. Dynamic convolutional layer (DCL) is the important backbone of DCNN
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Fig. 2. The framework of our model SANe. DCNN is a multi-layer convolutional neural
network for predicting missing entities, and its filter parameters are generated by TaPG
based on temporal information.

that identifies the key feature from the inputs based on a filter. It differs from
traditional convolutional layer that the parameters of DCL filter is dynamically
produced from TaPG instead of fixed. Naturally, TaPG is a tremendous parame-
ter pool and selects appropriate parameters for DCLs when dealing with different
temporal facts. DCL pads and filters the input X ∈ R

Ci×H×W to produce the
feature map X′ ∈ R

Co×H×W based on the filter ωp,τ ∈ R
Co×Ci×k×k followed by

the nonlinear activation function ReLU (i.e., Rectified Linear Unit [12]),

X′ = DCL
(
X; θωp,τ

)
= ReLU (X � ωp,τ ) , (2)

where � is the convolution operator, H and W are height and width, Co and
Ci are the size of input and output channels, and k is the kernel size. The filter
ωp,τ is produced from TaPG according to the position p of DCL in DCNN and
the timestamp τ , i.e., θωp,τ

= g(τ , p).
Multiple DCLs are stacked to handle the entities and relations in an effective

way. In particular, we first reshape the entity h and the relation r into h̃ ∈ R
H×W

and r̃ ∈ R
H×W , respectively. To enhance the heterogenous interactions between

entity h̃ and relation r̃ vectors, we perform feature permutation and checkered
reshaping operations on the concatenation X ∈ R

2H×W of h̃ and r̃ inspired
by the work [38]. Feature permutation shuffles each element in h̃ and r̃, while
checkered reshaping ensures that every two adjacent cells in X are alternately
occupied by elements in h and r. The regularized input X̃ after above operations
is fed into P DCLs to produce the feature map M.

To predict the correct tail entity, a scoring function is introduced to evaluate
the score of correlation between the query (h, r, ?, τ) and candidate tail entity
t ∈ R

d,
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ψτ (h, r, t) = Linear(flatten(M))t, (3)

where Linear(·) is a linear layer activated by ReLU and flatten(x) flattens x into
a 1-dimensional vector.

The sets of filters of DCNN {ω1,τ , · · · ωP,τ} reflect the delivery and varia-
tion of knowledge at different snapshots in consecutive time. The spaces induced
by DCNN at different timestamps should be same, overlapped or uncorrelated
when the timestamps of facts are the same, adjacent and distant. In other words,
the overlap of spaces at different timestamps constrains the range of knowledge
sharing. This property ensures that the interfere from early snapshots is alle-
viated and the missing facts in adjacent snapshots are delivered to accumulate
knowledge. Essentially, our SANe model stores the facts in multiple knowledge
bases, i.e., multiple sets of parameters, depending on the time range. Thus, it can
“index” the knowledge precisely by finding the “records” in parameters according
to different timestamps. The next section will introduce the parameter gener-
ation of DCNN to preserve the valid knowledge and forget the mistaken in a
time-aware way.

3.2 Time-Aware Parameter Generator

Usually, in the process of searching records by human, the searcher reduces the
hunting zone by gradually indexing year, month and day. For example, if a person
wants to query a record that are indexed by the timestamp, he needs to split
timestamps into year, month and day to locate it. If the record is missing at
the timestamp, the similar records around the timestamp should be returned.
Based on the observation, the filter parameters ω1,τ of the first DCL in DCNN
are required to establish a global “catalogue” of the year of τ . The catalogue
encodes high-level contextual features with an annual perspective. After that,
the second and third of DCLs predict the facts by supplementing more details
of month and day information based on the parameters ω2,τ and ω3,τ .

In this part, we introduce a time-aware parameter generator (TaPG) that
“store” the knowledge in three sets of parameters that are associated with “year-
month-day”. Specifically, we first split and embed the timestamp τ as a fixed-
length sequence −→τ = (τ1, τ2, τ3), where τ1, τ2, τ3 ∈ R

dτ are the embeddings of
year, month and day respectively. A recurrent neural network (RNN) is intro-
duced to model the sequence data −→τ that produces multiple outputs,

{o1,o2,o3} = RNN(−→τ ), (4)

oi = σ(Wosi + bo), (5)

si = σ(Usτi +Wssi−1 + bs), (6)

where Wo, Ws and Us are RNN parameters, si and oi are the hidden state and
output at step i, and σ is the nonlinear activation function.
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Fig. 3. The process of query prediction by DCNN. Queries with different timestamps
are handled by different parameters, while queries with similar timestamps partially
share model parameters.

Multiple fully connected layers {Linear1, Linear2, Linear3} are employed to
transform the outputs of RNN into a set of parameters,

g(τ) = {ωi,τ} = {Lineari(oi)}. (7)

The linear layers {Lineari} are a parameter pool, which retrieves the parameters
according to the context of timestamps. The 1-dimensional vectors produced
by {Lineari} are reshaped into tensors in R

Co×Ci×k×k, since the convolutional
operations are involved. The scale of DCNN parameters is obviously irrelevant
to the number of timestamps, which only depends on the size of the linear layers
{Lineari}.

As show in Fig. 3, the facts with the same year are dealt with the same
filters ω1,τ and thus the valid knowledge during a interval is shared across adja-
cent snapshots. Compared to the works [40,45] that construct sparse snapshots
at each timestamps explicitly, our implicit way enable the knowledge delivery
at different snapshots. Of course, the facts that have long gap of timestamps
are divided into two totally different models that avoids the interfere from
early knowledge. Therefore, TaPG enables the ability of DCNN to tackle time-
variability and time-stability in an efficient manner. Multiple spaces induced by
the parameters output from TaPG are adapted for different temporal snapshots.
The knowledge at different time is shared or separated during multiple spaces
in term of the context from TaPG.

3.3 Training and Optimization

During training process, the score ψτ (h, r, t) is applied with the logistic sigmoid
function σ (·) to obtain p = σ (ψτ (h, r, t)). p indicates the predicted probability
that the candidate tail entity t is the answer to query (h, r, ?, τ). The training
objective is to minimize the negative log-likelihood loss as follows,

L(y, p) = − 1
N

∑

i

(yi log(pi) + (1 − yi) log(1 − pi)), (8)
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Table 1. Scoring functions of SANe and several existing TKGC methods, and com-
parison of space complexity.

Model Scoring Function Space Complexity

TransE ‖h+ r − t‖ O (ned + nrd)

TTransE ‖h+ r+ τ − t‖ O (ned + nrd + nτd)

HyTE ‖Pτ (h) + Pτ (r) − Pτ (t) ‖ O (ned + nrd + nτd)

ATiSE DKL (Ph,τ − Pt,τ ,Pr,τ ) O (ned + nrd)

TeRo ‖hτ + r − tτ‖ O (ned + nrd)

SANe Linear(flatten(CNN(h, r)))t O (ned + nrd + nydτ )

where y = 1 for positive samples, i.e., (h, r, t, τ) ∈ G, otherwise y = 0. N indicates
the number of training samples.

In Table 1, we summarize the scoring functions and space complexity of sev-
eral TKGC methods. ne, nr, and nτ are the number of entities, relations, and
timestamps, respectively. d and dτ are the dimensions of feature vectors. ny is
the number of years. CNN refers to the three-layer convolutional neural network
in DCNN. In terms of space complexity, SANe is comparable to several existing
methods.

4 Experiments

In this section, four TKGC benchmark datasets are used to demonstrate the
effectiveness of SANe. The experimental setup is first explained in detail. Then,
the experimental results are discussed. Ablation studies are also conducted to
evaluate the importance of different components in SANe.

4.1 Experimental Setup

Datasets. The proposed model is evaluated on four public benchmarks,
ICEWS14 [10], ICEWS05-15 [10], YAGO11k [7], and Wikidata12k [7]. ICEWS14
and ICEWS05-15 are subsets of the Integrated Crisis Early Warning System
(ICEWS) [5] dataset, where ICEWS14 includes events that occurred in 2014, and
ICEWS05-15 includes events that occurred in the period 2005 to 2015. ICEWS
contains discrete time-annotated sociopolitical events, e.g. (Barack Obama, Make
a visit, South Korea, 2014-03-15 ). YAGO11k and Wikidata12k are subsets of
YAGO3 [26] and Wikidata [9], respectively. Facts in both YAGO11k and Wiki-
data12k contain time annotations, and each fact is formatted as a time interval.
Following Dasgupta et al. [7], facts with time intervals are discretized into mul-
tiple quadruplets with a single timestamp. Meanwhile, month and day informa-
tion is dropped, and year-level granularity is preserved. To process such datasets,
timestamps are appended with constant fabricated months and days, e.g., 2015-
00 -00. Statistics for these four benchmarks are summarized in Table 2.
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Table 2. Statistics of TKGC benchmark datasets. The unit of the time span is year.

Datasets #Entities #Relations Time span #Train #Valid #Test

ICEWS14 6,869 230 2014 72,826 8,941 8,963
ICEWS05-15 10,094 251 2005-2015 386,962 46,275 46,092
YAGO11k 10,623 10 -453-2844 16,408 2,050 2,051
Wikidata12k 12,554 24 1709-2018 32,497 4,062 4,062

Baselines. We compare with a wide selection of static and temporal KGC mod-
els: (1) static KGC models, including TransE [4], DistMult [46], ComplEx-N3 [22],
RotatE [36], and QuatE2 [47]; (2) temporal KGC models, including TTransE [23],
HyTE [7], TA-TransE [10], TA-DistMult [10], DE-SimplE [13], ATiSE [44], TeRo
[43], ChronoR [32], TimePlex [15], TComplEx [21], TeLM [42], and BoxTE [27].
Among them, ChronoR and BoxTE are not compared with SANe on YAGO11k
and Wikidata12k, because their results are unobtainable.

Evaluation Protocols. For each quadruple (h, r, t, τ) in the test set, two queries
(h, r, ?, τ) and (?, r, t, τ) are leveraged to optimize the model simultaneously.
Note that in practice, each quadruple (h, r, t, τ) is added with a reciprocal rela-
tion (t, r−1, h, τ). Thus, the query (?, r, t, τ) is replaced by (t, r−1, ?, τ). Such
operations do not result in a loss of generality [15,42]. MRR (Mean Reciprocal
Rank, the average of the reciprocal values of all computed ranks) and Hits@N
(the percentage of times that the true entity candidate appears in the top N
of ranked candidates, where N ∈ {1, 3, 10}) are reported as evaluation metrics.
Among them, MRR is an important evaluation index, which is less susceptible to
outliers [10]. Higher MRR and Hits@N indicate better model performance. All
evaluations are performed under the time-wise filtering setting widely adopted
in previous work [43,44].

Implementation Details. The proposed model is implemented using PyTorch
[30] and trained using a single NVIDIA GeForce RTX 3090 GPU. The values
of the hyperparameters are determined based on the MRR performance on each
validation set. The model parameters are initialized using Xavier initialization
[11] and optimized by the Adam optimizer [20] with a learning rate of 0.001. Dur-
ing training, 256 mini-batches are created for each epoch. The negative sampling
ratio is set to 1000, i.e., 1000 negative samples are created for each quadruple
in the training set. The embedding dimension is set to d = 200 for all datasets
except ICEWS05-15 which is set to d = 300. The number of convolution filters
is fixed to 64. The kernel size is chosen from k ∈ {3, 5, 7}.

4.2 Main Results

The MRR and Hits@N results on ICEWS dataset, i.e., ICEWS14 and ICEWS05-
15, are reported in Table 3. Some observations and analysis are listed as follows.
(1) Most of TKGC models achieve significantly better results than static KGC
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Table 3. Link prediction results on ICEWS14 and ICEWS05-15. ∗: results are taken
from [10]. †: results are taken from [43]. �: results are taken from [42]. Dashes: results
are unobtainable. Other results are taken from the original papers. The best results
are marked in bold.

Datasets ICEWS14 ICEWS05-15
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE∗ [4] .280 .094 – .637 .294 .090 – .663
DistMult∗ [46] .439 .323 – .672 .456 .337 – .691
ComplEx-N3† [22] .467 .347 .527 .716 .481 .362 .535 .729
RotatE† [36] .418 .291 .478 .690 .304 .164 .355 .595
QuatE2† [47] .471 .353 .530 .712 .482 .370 .529 .727
TTransE† [23] .255 .074 – .601 .271 .084 – .616
HyTE† [7] .297 .108 .416 .655 .316 .116 .445 .681
TA-TransE∗ [10] .275 .095 – .625 .299 .096 – .668
TA-DistMult∗ [10] .477 .363 – .686 .474 .346 – .728
DE-SimplE† [13] .526 .418 .592 .725 .513 .392 .578 .748
ATiSE [44] .545 .423 .632 .757 .533 .394 .623 .803
TeRo [43] .562 .468 .621 .732 .586 .469 .668 .795
ChronoR [32] .625 .547 .669 .773 .675 .596 .723 .820
TimePlex [15] .604 .515 – .771 .640 .545 – .818
TComplEx� [21] .610 .530 .660 .770 .660 .590 .710 .800
TeLM� [42] .625 .545 .673 .774 .678 .599 .728 .823
BoxTE [27] .613 .528 .664 .763 .667 .582 .719 .820
SANe .638 .558 .688 .782 .683 .605 .734 .823

methods. TKGC models leverage temporal information to constrain the simi-
larity of facts, such that similar facts with different timestamps are separate
efficiently. (2) SANe achieves the best performance for all metrics on link pre-
diction, which suggests the effectiveness of adapting snapshots with different
timestamps to different latent spaces. The facts are implicitly assigned to differ-
ent CNN modules, and thus each snapshot at different timestamps is handled in
term of a specific latent space. The results indicate that the parameter genera-
tion plays an important role in alleviating mutual interference of the knowledge
across snapshots with different timestamps. (3) Facts in ICEWS are transient
events, which usually happen and end in a moment. Compared to other TKGC
methods, SANe is capable of remembering and inferring instant facts by recover-
ing the CNN model from the parameter pool according to timestamps. The result
in Table 3 further certifies that SANe is more effective to enable time-variability
that inherent in TKGs.

Table 4 shows the prediction performance over Wikipedia-based datasets, i.e.,
YAGO11k and Wikidata12k. SANe achieves superior performance over previous
methods by a large margin compared to the result on ICEWS. On MRR, a main
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Table 4. Link prediction results on YAGO11k and Wikidata12k. ∗: results are taken
from [44]. †: results are taken from [43]. �: results are taken from [42]. Dashes: results
are unobtainable. Other results are taken from the original papers. The best results
are marked in bold.

Datasets YAGO11k Wikidata12k
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE∗ [4] .100 .015 .138 .244 .178 .100 .192 .339
DistMult∗ [46] .158 .107 .161 .268 .222 .119 .238 .460
ComplEx-N3∗ [22] .167 .106 .154 .282 .233 .123 .253 .436
RotatE∗ [36] .167 .103 .167 .305 .221 .116 .236 .461
QuatE2∗

[47] .164 .107 .148 .270 .230 .125 .243 .416
TTransE† [23] .108 .020 .150 .251 .172 .096 .184 .329
HyTE† [7] .105 .015 .143 .272 .180 .098 .197 .333
TA-TransE† [10] .127 .027 .160 .326 .178 .030 .267 .429
TA-DistMult† [10] .161 .103 .171 .292 .218 .122 .232 .447
ATiSE [44] .185 .126 .189 .301 .252 .148 .288 .462
TeRo† [43] .187 .121 .197 .319 .299 .198 .329 .507
TimePlex [15] .236 .169 – .367 .334 .228 – .532
TComplEx� [21] .185 .127 .183 .307 .331 .233 .357 .539
TeLM� [42] .191 .129 .194 .321 .332 .231 .360 .542
SANe .250 .180 .266 .401 .432 .331 .483 .640

metric for the TKGC task, SANe outperforms by 6% and 29% dramatically
compared with the state-of-the-art methods across the YAGO11k and Wiki-
data12k, respectively. The facts in Wikipedia-based datasets spans a period of
hundreds of years, even around 3,000 years, while ICEWS only covers several
years. The plenty of facts usually last for a long period of time different from
ICEWS that events happen and end in a moment. The superior result of SANe
reveals the necessity of designing a more principled parameter generation app-
roach to produce multiple latent spaces that constrains the range of knowledge
sharing based on timestamp distance. Multiple sets of parameters encode the
context of timestamps that the knowledge in adjacent snapshots is delivered to
accumulate knowledge. Therefore, the valid knowledge during a period can be
preserved and shared efficiently. The models of learning independent represen-
tations [15,21,23,32,42] or incorporating timestamp into entities and relations
[7,10,13,27,43,44] suffer from the interfere across snapshots particularly when
the knowledge last for a long period. This is mainly because they handle all the
facts in an identical latent space, and thus inevitably misremember and forget
knowledge. The result in Table 4 further certifies that SANe is more effective to
enable time-stability inherent in TKGs.
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4.3 Analysis

Ablation Study. To better verify the effectiveness of the proposed model, sev-
eral variants of SANe are investigated on ICEWS14. The results are shown in
Table 5. The� is used to indicate a component used in the experiment, and the
� is used to indicate the absence of the corresponding component. The SANe
without time information means that TaPG returns a fixed set of parameters
regardless of the timestamps. Based on the SANe without time information, the
SANe without parameter generation also incorporates the temporal information
into the entities, i.e., ĥ = h � τ , where � is Hadamard product as the work
[34] does. The TaPG of SANe without time granularity produces the parameters
directly in term of timestamp τ without RNN, i.e., {Lineari(τ )}. It is found that
(1) when the time information is not used, the model achieves the worst results,
which reflects the importance of time information to SANe. (2) The parameter
generator has a great influence on the model performance, which verifies the
effectiveness of the time-aware parameter generator. (3) Decomposing times-
tamps into different time granularities is beneficial to the improvement of model
performance. (4) Even if the timestamps are not decomposed into different gran-
ularities, the model achieves better results than previous TKGC methods, which
confirms the superiority of the model.

Table 5. Results for different model variations on ICEWS14.

Time
Information

Time
Granularity

Parameter
Generation

MRR Hits@1 Hits@3 Hits@10

� � � .469 .350 .529 .703
� � � .608 .527 .656 .760
� � � .622 .536 .679 .778
� � � .630 .548 .683 .780
� � � .638 .558 .688 .782

Table 6. Generalization performance for queries with unseen timestamps on the
ICEWS14 dataset.

Metrics MRR Hits@1 Hits@3 Hits@10

DistMult [46] .410 .302 .462 .620
DE-SimplE [13] .434 .333 .492 .624
TComplEx [21] .443 .348 .492 .625
SANe .503 .394 .569 .709

Generalizing to Unseen Timestamps. Since timestamps are decomposed at
different time granularities in SANe, this allows queries with similar timestamps
to share a part of filter parameters and temporal information. Therefore, SANe
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is expected to perform well on queries with unseen timestamps. Following Goel
et al. [13], we re-split ICEWS14, taking all quadruplets except the 5th, 15th, and
25th day of each month as the training set, and using the excluded quadruplets
to randomly split into validation and test sets. The obtained results in Table 6
indicate that SANe gains almost 14% MRR improvement over TComplEx [21],
thus showing the effectiveness of our model to generalize to unseen timestamps.

Performance on Different Relations. Most of the time annotations in
YAGO11k are time intervals, and the relations between entities may change after
a period of time. We evaluate SANe on several relations (worksAt, hasWonPrize,
graduatedFrom, and isAffiliatedTo) in YAGO11k, and reproduce ATiSE [44] and
TimPlex [15] based on their given hyperparameters. These relations are usu-
ally created or disappeared between some entities at a certain point in time,
and maintained for a period of time [44]. For example, a person may switch
to another company after working for one company for a few months. SANe
is expected to perform well in such relations. The comparisons in Fig. 4 show
that SANe is superior in almost all metrics. This confirms our hypothesis that
adapting different temporal snapshots to different latent spaces via parameter
generation is beneficial for capturing the time-variability of knowledge. Likewise,

Fig. 4. Results obtained by ATiSE [44], TimePlex [15], and SANe on several relations
in YAGO11k.
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overlapping latent spaces by decomposing timestamps into different granularities
facilitates knowledge sharing across adjacent snapshots, which is beneficial for
modeling the time-stability of knowledge.

Visualization of Temporal Embeddings. Figure 5 shows a t-SNE [25] visual-
ization of the temporal embeddings learned by SANe and its variant. Figure 5(a)
visualizes the temporal embeddings learned by the variant of SANe. Timestamps
are modeled independently by the variant of SANe rather than decomposed
into different granularities. Figure 5(b) visualizes the temporal embeddings with
granularity of 1 day learned by SANe. By comparison, it can be found that
the temporal embeddings learned by SANe form good clusters in chronological
order. In general, SANe effectively preserves time series information by decom-
posing timestamps into different granularities and processed by the time series
model, which provides good geometric meanings for temporal embeddings, thus
improving the model performance.

Fig. 5. The figure illustrates the t-SNE visualization of the temporal embeddings
obtained by SANe and its variant after training on ICEWS14. Time points in different
months are represented by different colors.

5 Conclusion and Future Work

In this paper, we shed a new light on the challenges of TKGC. For the first time,
we proposed to investigate the problem of TKGC by adapting different latent
spaces for snapshots at different timestamps. Specifically, we provided a novel
model named SANe to process the entities and relations using a dynamic convo-
lutional neural network equipped with different parameters, which are produced
by TaPG according to temporal information. TaPG endowed with contextual
timestamps gathers valid knowledge from multiple sets of parameters by con-
straining the overlap of spaces. Our model is different from existing works which
learn the temporal KGs all the time in the same latent space. The experimental
results demonstrate the benefits of constructing parameter-independent model
implicitly for each temporal snapshot.
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Supplemental Material Statement: Source code to reproduce the full experimen-
tal results is already available on the Easychair system and will be published on
https://github.com/codeofpaper/SANe.
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