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Abstract. Real-world knowledge graphs (KGs) are usually incomplete—
that is, miss some facts representing valid information. So, when applied
to such KGs, standard symbolic query engines fail to produce answers that
are expected but not logically entailed by the KGs. To overcome this issue,
state-of-the-art ML-based approaches first embed KGs and queries into
a low-dimensional vector space, and then produce query answers based
on the proximity of the candidate entity and the query embeddings in
the embedding space. This allows embedding-based approaches to obtain
expected answers that are not logically entailed. However, embedding-
based approaches are not applicable in the inductive setting, where KG
entities (i.e., constants) seen at runtime may differ from those seen during
training. In this paper, we propose a novel neuro-symbolic approach to
query answering over incomplete KGs applicable in the inductive setting.
Our approach first symbolically augments the input KG with facts repre-
senting parts of the KG that match query fragments, and then applies a
generalisation of the Relational Graph Convolutional Networks (RGCNs)
to the augmented KG to produce the predicted query answers. We for-
mally prove that, under reasonable assumptions, our approach can cap-
ture an approach based on vanilla RGCNs (and no KG augmentation)
using a (often substantially) smaller number of layers. Finally, we empir-
ically validate our theoretical findings by evaluating an implementation
of our approach against the RGCN baseline on several dedicated bench-
marks.

Keywords: Query answering · Knowledge graphs · Graph neural
networks · Neuro-symbolic AI

1 Introduction

Knowledge graphs (KGs) are databases where information is represented as a
collection of entities and relations between them [13], or, equivalently, as a set
of (function-free) first-order facts. Query answering is a fundamental reasoning
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task on KGs, which requires identifying all (tuples of) entities in a KG that
satisfy a specific formal expression, called a query. For example, (conjunctive)
query q(x) = ∃y1, y2. almaMater(x, y1)∧professorAt(y1, y2) finds, in a KG, all the
universities that are the alma maters of persons working as professors.

Queries can be answered over KGs using symbolic logic-based engines, such
as SPARQL and Cypher [16]. This approach, however, is challenged by the
problem that many real-life KGs are incomplete, in the sense that there are
true facts missing in the KG that may be relevant for answering a particular
query. For example, if a KG contains the fact professorAt(edith, berkeley), rep-
resenting that Edith is a professor at UC Berkeley, but it is missing the fact
almaMater(melbourne, edith), representing that the University of Melbourne is
the alma mater of Edith, then melbourne will not be returned as an answer for
the above query, even though this answer may be expected by the user.

Query Embedding (QE) approaches have been proposed as a way to over-
come this limitation [4,9,11,17,18,20]. QE approaches embed KGs and monadic
conjunctive queries jointly in a low dimensional vector space, and then they
evaluate the likelihood of candidate answers according to their distance to the
query embedding in the embedding space. These methods can produce answers
that may be of interest to the user, even if they correspond to parts of the KG
that only partially match the query. However, to the best of our knowledge,
existing QE approaches are only applicable in the transductive setting, where
trained models can only process KGs that mention only entities seen during
training. An increasing number of applications, however, require an inductive
setting [10,14,23,25], where unseen entities are also allowed.

Relational Graph Convolutional Networks (RGCNs) [19] are a class of graph
neural networks (GNNs) which take as input directed labelled multigraphs—
in particular, graphs with nodes connected by coloured edges and annotated
with real-valued feature vectors. When applied to such a multigraph, an RGCN
updates, in each layer, the feature vector of each node by combining, by means
of learned parameters, the node’s feature vector in the previous layer with the
previous-layer vectors of the node’s neighbours. If the vector in the final layer is
a single Boolean value, then the RGCN can be seen as a (binary) node classifier.
RGCNs can be used to answer monadic queries on a KG: first, encode the KG
as a directed multigraph with a node for each entity in the KG; then, run a
trained RGCN on the multigraph to predict whether each entity is an answer
to the query or not (similar approaches have been used for the related problem
of KG completion [10,14,22–24]). This method has three properties making it
suitable for answering queries on incomplete KGs in an inductive setting.

1. Inductive Capabilities. RGCNs do not use entity-specific parameters, so they
can be applied to KGs mentioning entities not seen during training.

2. Expressivity. Recent theoretical analysis of RGCNs [5] shows that, for every
monadic tree-shaped conjunctive query, there exists an RGCN that exactly
captures this query—that is, for each KG, the answers provided by the RGCN
on the KG are the same as the real query answers over the KG.
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3. Noise Tolerance. Similarly to other ML approaches, RGCNs can produce
relevant query answers even if such answers do not have exact matches in the
input KG (e.g., due to missing information).

A key limitation of using RGCNs for query answering over KGs, however,
is that, in order to recognise a part of the KG relevant to a query answer, any
RGCN requires at least as many layers as the length of the longest (simple) path
in the query to an answer variable. Empirical results have shown, however, that
GNNs with many layers often fail to learn long-range dependencies and suffer
from several problems, such as over-smoothing [12]. This problem persists even
if the input KGs have no missing information.

To address this limitation, we propose in this paper a novel neuro-symbolic
approach to inductive query answering over incomplete KGs. Our approach first
augments an input KG using a set of logical (i.e., symbolic) rules extracted
from the query. The application of a rule to a KG adds new facts that repre-
sent (complete) parts of the KG matching connected query fragments. Then the
approach encodes the augmented KG as a coloured hypergraph, and processes
this hypergraph using a novel neural architecture called Hyper-Relational Graph
Convolutional Network (HRGCN ), which generalises vanilla RGCNs to be appli-
cable to coloured hypergraphs. We then provide a proof that, under mild and
reasonable assumptions, our approach can emulate the baseline approach that
relies on vanilla RGCNs (without KG augmentation) using significantly less lay-
ers. Finally, we present an implementation of our approach in a system called
GNNQ and evaluate it on nine novel benchmarks for inductive query answering
over incomplete KGs against a baseline without augmentation. Our results show
that instances of GNNQ can be effectively trained and deployed in practice;
moreover, they outperform the baselines, even if the latter use more layers.

2 Preliminaries

In this paper, we rely on a standard formalisation of knowledge graphs (and
related concepts) in first-order logic.

Let us consider disjoint countable sets of predicates, constants, and variables,
where each predicate is assigned a natural number called arity. A k-ary atom,
with k ∈ N, is an expression of the form P (t̄), where P is a k-ary predicate and
t̄ = t1, . . . , tk is a k-tuple of constants and variables. A fact is a variable-free
atom. A dataset is a finite set of facts. A knowledge graph (KG) is a dataset
containing only unary and binary facts. So, entities in a KG are represented by
constants, while classes of entities and relations between them are represented
by unary and binary facts, respectively. Let Const(D) and Pred(D) denote the
constants and predicates mentioned in a dataset D, respectively.

A conjunctive query (CQ) with (a tuple of) answer variables x̄, is a formula
q(x̄) = ∃ȳ. φ(x̄, ȳ), where the body φ(x̄, ȳ) is a conjunction of atoms over variables
x̄, ȳ. A tuple ā of constants is an answer to q(x̄) over a dataset D if there is a
homomorphism from q(ā) to D—that is, an assignment of constants to ȳ such
that each atom in φ(ā, h(ȳ)) is in D. Let q[D] denote the set of all answers to
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Fig. 1. Representation of tree-CQ q(x) and KG K with completion K∗ from Example 1:
the single completion fact is drawn as a dashed line, constants are shown by first letter.

q(x̄) over D. In this paper, we concentrate on tree-shaped CQs (tree-CQs)—that
is, constant-free CQs over unary and binary predicates with one answer variable
such that the primal pseudograph of the CQ’s body is a tree; here, the primal
pseudograph of a conjunction of atoms is the undirected pseudograph whose
nodes are the variables of the conjunction and which has an edge between (not
necessary distinct) z1 and z2 for each binary atom R(z1, z2) in the conjunction.
We call a primal pseudograph primal tree if it is a tree. The height of a tree-CQ
is the height of its primal tree with the answer variable as the root.

3 Inductive Query Answering over Incomplete KGs

We are interested in the problem of finding the answers to a given (known in
advance) tree-CQ over KGs that may be incomplete—that is, missing (relevant)
information. In particular, we assume that each KG has a completion—that is,
a larger (or identical) KG that may include additional facts, which are ‘miss-
ing’ in the original KG. We consider the setting where all the constants in the
completion facts are already mentioned in the original KG. However, we assume
that the function that maps a KG to its completion is unknown; instead, only
partial knowledge about this function is provided to a system in the form of
examples, each of which consists of a KG, a constant, and a Boolean value,
which tells whether the constant is an answer to the tree-CQ over the com-
pletion of the KG. Finally, our setting is inductive [10,14,23,25], which means
that there exists a finite, known-in-advance set of predicates used in all KGs,
their completions, and the tree-CQ, but the constants in different KGs may be
different.

We are now ready to formalise the ML task of inductive tree-CQ answering
over incomplete KGs, which we call the IQA task for brevity.

Definition 1. Given a finite set Pred of unary and binary predicates, and a
tree-CQ q(x) that uses only predicates from Pred, let us assume a hidden com-
pletion function ·∗ mapping each KG K with Pred(K) ⊆ Pred to another KG
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K∗ with Pred(K∗) ⊆ Pred, called the completion of K, such that K ⊆ K∗ and
Const(K∗) = Const(K). Then, the IQA task is to learn a function gq mapping
each KG K with Pred(K) ⊆ Pred to the set q[K∗] of answers to q(x) over K∗.

Example 1. Let q(x) be the tree-CQ

∃y1, y2, y3, y4. almaMater(x, y1) ∧ professorAt(y1, y2) ∧
supervisedBy(y1, y3) ∧ wonNobel(y3, y4),

which asks for all universities that are the alma maters of professors who were
supervised by Nobel Prize winners, and let K be the KG

{supervisedBy(alice, roger), supervisedBy(daniel, carol),
wonNobel(roger, physics),wonNobel(carol,medicine),
professorAt(alice, oxford), professorAt(daniel, oxford),

graduatedFrom(alice, shanghai), graduatedFrom(daniel, toronto),
almaMater(toronto, daniel)}

with K∗ = K ∪ {almaMater(shanghai, alice)} (see Fig. 1). The desired func-
tion gq for q(x) should return the set {shanghai, toronto} of answers when
applied to K, because both toronto and shanghai are answers to q(x) over K∗.
Note, however, that shanghai is not an answer to q(x) over K, since the fact
almaMater(shanghai, alice) is missing from K.

4 Neuro-Symbolic Approach to the IQA Task

In this section, we describe our approach for solving the IQA task. For the
remainder of this section, let us fix a (possibly empty) set Pred1 = {A1, . . . , Am}
of unary predicates, a finite set Pred2 of binary predicates, and a tree-CQ
q(x) = ∃ȳ. φ(x, ȳ) over predicates in Pred1 ∪ Pred2. For technical reasons, we
assume that the variables x, ȳ are ordered following a breadth-first traverse of
the primal tree of φ(x, ȳ). This assumption is without loss of generality, since
given an arbitrary tree-CQ, we can always construct a semantically equivalent
query that satisfies our requirement by reordering ȳ. Finally, for each R ∈ Pred2,
we consider a fresh binary predicate R̄, which we call the inverse of R, and we
let Pred+2 denote the set Pred2 ∪ {R̄ | R ∈ Pred2}.

Our approach is divided in three steps. In the first step, described in Sect. 4.1,
the input KG is augmented with new facts that will assist our ML model in
recognising parts of the input KG that match selected query fragments. In the
second step, described in Sect. 4.2, our approach encodes the augmented KG
into a data structure suitable for our ML model, namely, a coloured labelled
(multi-)hypergraph, where nodes correspond to constants in the KG and edges
to non-unary atoms. In the third and final step, described in Sect. 4.3, the app-
roach processes the coloured hypergraph by means of a generalisation of RGCNs.
The output of this process is a Boolean value for each node in the hypergraph,
representing whether the constant associated to this node is predicted as an
answer to q(x) over the completion of the input KG or not.
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4.1 Augmentation of Knowledge Graphs

As discussed in the introduction, vanilla RGCNs with Boolean outputs can be
used to solve the IQA task by first encoding the input KG as a directed multi-
graph and then applying a trained RGCN to the encoding. Such RGCNs, how-
ever, may require a large number of layers to adequately capture the target
function. However, training RGCNs with many layers is expensive; moreover,
the resulting models may have poor performance due to over-smoothing [12].
To address these issues, our procedure first augments the input KG with facts
representing (complete) parts of the KG matching query fragments. As we prove
in Sect. 5, this allows us to solve the IQA task using significantly less layers.

The KG augmentation relies on a set of logical rules, which correspond to
fragments of the tree-CQ. These rules are applied to the KG to infer new facts,
which are added to the KG. To formalise this step, we need some terminology.

A (projection-free) rule is an expression of the form H(z̄) ← ψ(z̄), where
the head H(z̄) is an atom over a |z̄|-ary predicate H, and the body ψ(z̄) is a
conjunction of atoms using variables z̄ (i.e., each variable in z̄ appears in at
least one atom in ψ(z̄), and there are no other variables in these atoms). The
application of a set R of rules to a dataset D is a dataset R(D) that extends D
with each fact H(ā) such that there is a rule H(z̄) ← ψ(z̄) in R with every fact
in ψ(ā) belonging to D. Note that in what follows we will only apply a rule to
datasets that do not mention the head predicate of the rule.

Next, we associate a set Rq of rules to our fixed tree-CQ q(x). Specifically, we
define Rq as the set of all the rules H(z̄) ← ψ(z̄), where ψ(z̄) is a sub-conjunction
of φ(x, ȳ) with the same order of variables in z̄ as their order in x, ȳ, such that

– the primal pseudograph of ψ(z̄) is connected (and hence it is a tree) and
– the height of this tree is at least 2,

and where H is a fresh |z̄|-ary predicate uniquely associated to ψ(z̄). Subse-
quently, we use Predq to denote the set of head predicates of the rules in Rq.
Note that, by our assumptions on the order of variables, the first variable in
z̄ will always be the one closest to x in the primal tree of φ(x, ȳ) rooted at x.
Moreover, the assumptions ensure that Rq does not contain rules with the same
body and head predicate, but different heads; this eliminates redundancy by
preventing augmentation with multiple facts identifying the same sub-KGs.

As discussed in Sect. 6.1, in our experiments we observe that it is often better
not to use all rules in Rq in the augmentation step. We believe that there are
two main reasons for this: first, increasing the number of augmentation facts
appears to have diminishing returns, since different facts can represent similar
parts of the input KG (satisfying similar query fragments); second, having a
large number of augmentation facts mentioning the same constant can produce
problems similar to over-smoothing. Therefore, we consider KG augmentations
with full Rq and augmentations with subsets of Rq.

Definition 2. The partial augmentation of a KG K over Pred1 ∪ Pred2 for the
tree-CQ q(x) with respect to rules R′

q ⊆ Rq is the dataset R′
q(K). The (full)

augmentation of K is the partial augmentation with respect to all Rq.
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Fig. 2. Representation of ψ, K, and augmentation R′
q(K) from Example 2

Example 2. Consider KG K, tree-CQ q(x) in Example 1, and the sub-
conjunction

ψ(y1, y2, y3, y4) = professorAt(y1, y2) ∧ supervisedBy(y1, y3) ∧ wonNobel(y3, y4),

of the body of q(x) (see Fig. 2); its primal pseudograph is a tree of height 3. So,
Rq contains rule r = H(y1, y2, y3, y4) ← ψ(y1, y2, y3, y4) for a fresh predicate
H, and the partial augmentation of K for q(x) with respect to R′

q = {r} is
K ∪ {H(alice, oxford, roger, physics),H(daniel, oxford, carol,medicine)}.

4.2 Encoding of Knowledge Graphs

We now describe our encoding of datasets into directed (multi-)hypergraphs
where hyperedges are coloured and nodes are labelled by real-valued vectors.
Specifically, our encoding introduces a hypergraph node for each constant in the
input dataset; then, each fact of arity greater than 1 is encoded into a hyperedge
of the colour corresponding to the fact’s predicate, and each fact of arity 1 is
encoded as a component of the feature vector labelling the corresponding node.
Furthermore, for each binary fact in the original dataset with a predicate R,
the encoding introduces, besides the R-coloured edge, an R̄-coloured edge in
the reverse direction; such edges will ensure that our ML model propagates
information in both directions whenever a binary fact connects two constants.

Definition 3. Given a finite set Col of colours with fixed arities greater than 1
and a dimension δ ∈ N, a (Col, δ)-hypergraph G is a triple (V, E , λ) where V is a
finite set of nodes, E is a set of directed hyperedges of the form (v, c, (u1, . . . , uk))
with c ∈ Col of arity k+1, {v, u1, . . . , uk} ⊆ V, and λ is a labelling function that
assigns a vector λ(v) ∈ R

δ to every v ∈ V. Hypergraph G is Boolean if δ = 1
and λ(v) ∈ {0, 1} for every v ∈ V.

Given a (Col, δ)-hypergraph G = (V, E , λ), we denote, for brevity, the vector
λ(v) for a node v with v, and we refer to its ith element as (v)i. Furthermore,
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for each v ∈ V and c ∈ Col, we define the c-neighbourhood N c
G(v) of v in G as

the set {(u1, . . . , uk) | (v, c, (u1, . . . , uk)) ∈ E}.
Now that we have our target graph structure, we can define our encoding

function, which maps datasets (including augmented KGs) to hypergraphs.

Definition 4. The encoding of a dataset D over predicates Pred1 ∪ Pred2 ∪
Predq is the (Col, δ)-hypergraph GD = (V, E , λ) such that

– Col = Pred+2 ∪ Predq (i.e., the binary predicates, their inverses, and the head
predicates of Rq),

– δ = m + 1 (where m is the number |Pred1| of unary predicates),
– V is the set of constants in D,
– E includes (a,R, (b1, . . . , bk)) for every R(a, b1 . . . , bk) ∈ D with k > 1,
– E includes (b, R̄, (a)) for every R(a, b) ∈ D with R ∈ Pred2, and
– λ is the labelling that assigns, to each a ∈ V, the vector a ∈ R

δ such that
(a)i = 1 if Ai(a) ∈ D or i = m + 1, and (a)i = 0 otherwise.

Note that the (m + 1)th element of each vector a is always 1; this element is
needed to cover the case m = 0—that is, when there are no unary predicates.

4.3 Hyper-Relational Graph Convolutional Networks

We now introduce a generalised version of the RGCN [19] architecture that can
process (Col, δ)-hypergraphs; we call this generalisation Hyper-Relational Graph
Convolutional Network (HRGCN ). Our approach uses a HRGCN to process the
hypergraphs that are encodings of augmented KGs.

Definition 5. Given a finite set Col of colours with fixed arities and δ ∈ N, a
(Col, δ)-HRGCN � with L ≥ 1 layers and dimensions (δ0, . . . , δL), for δ0 = δ, is

({Aggr�}L
�=1, {Comb�}L

�=1,Cls),

where

– each aggregation function Aggr�, 1 ≤ � ≤ L, maps a multiset of tuples of the
form (c,u1, . . . ,uk) with c ∈ Col and each ui in R

δ�−1
to a vector in R

δ�−1
;

– each combination function Comb�, 1 ≤ � ≤ L, maps two vectors in R
δ�−1

to
a vector in R

δ�

;
– classification function Cls maps a vector in R

δL

to a value in {0, 1}.
Given a (Col, δ)-hypergraph G = (V, E , λ), HRGCN � induces the sequence
λ0, . . . , λL of labellings such that λ0 = λ, and, for each � ∈ {1, . . . , L} and
v ∈ V, the value of λ�(v) = v� is defined as

v� = Comb�
(
v�−1,Aggr�

({{(c,u�−1
1 , . . . ,u�−1

k ) | (u1, . . . , uk) ∈ Nc
G(v), c ∈Col}}))

.

The result �(G) of applying � to G is the (Col, δ)-hypergraph (V, E , λbool), where
λbool is the labelling of every node v ∈ V by Cls(vL). Subsequently, �(G, v)
denotes vL and �true[G] denotes the set of all v ∈ V with λbool(v) = 1.

Then, a (Col, δ)-RGCN is a (Col, δ)-HRGCN for Col with no colours of arity
greater than 2 (this is essentially the standard definition of RGCNs [19]).
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5 Advantages of Knowledge Graph Augmentation

As discussed in the introduction, the main motivation for KG augmentation is
to help ML models easily recognise parts of the input KG that match complete
connected fragments of the query. In this section, we present a theorem that
makes this conjecture precise. To this end, we assume a natural and broad class
of completion functions, which arguably captures those one may expect to find
in practice. Then, we will show that, for each (big enough) tree-CQ q, if there
is an instance of our approach capturing the goal function gq without using KG
augmentation, then there exists an instance of the approach that also captures
gq using (full) KG augmentation, but whose HRGCN has significantly less layers.

Definition 6. A completion function ·∗ over a set of predicates Pred is

– monotonic under homomorphisms if for every KGs K1 and K2 over Pred and
each homomorphism h from K1 to K2, h is also a homomorphism from K∗

1 to
K∗

2, where a homomorphism h from K1 to K2 is a mapping from Const(K1)
to constants such that h(K1) ⊆ K2;

– s-local, for s ∈ N, if for every KG K over Pred and every fact α ∈ K∗ there
is Kα ⊆ K such that α ∈ K∗

α and Kα contains an undirected path (through
constants and binary facts) from each constant in Kα to each constant in α
of length at most s;

– k-incomplete for a tree-CQ q(x) if for each KG K over Pred and each answer
a ∈ q[K∗] there is Ka such that K ⊆ Ka ⊆ K∗, a ∈ q[Ka], and |Ka \ K| ≤ k.

The intuition under these notions is as follows. Monotonicity under homo-
morphisms requires that every fact in the completion of a KG should also appear
(in a suitable form) in the completion of any KG that has the same structure
as the original KG. Locality reflects the intuition that every fact in the comple-
tion is a consequence of a small neighbourhood of the fact in the original KG.
Finally, incompleteness for a query means that, for every answer to the query,
only a small number of facts can be missing in any ‘witness’ of it—that is, any
part of the KG completion (fully) matching the query. We will now state our
main result; its proof can be found in the supplemental material.

Theorem 1. Let Pred1 and Pred2 be finite sets of unary and binary predicates,
respectively, and let Pred+2 = Pred2 ∪{R̄ | R ∈ Pred2} and Pred = Pred1 ∪Pred2.
Let q(x) be a tree-CQ of height h over Pred and ·∗ be a completion function
over Pred that is monotonic under homomorphisms, s-local, and k-incomplete for
q(x). If there is an L-layer (Pred+2 , δ)-RGCN �, for δ ∈ N, such that �true[GK] =
q[K∗] for each KG K over Pred, then there is a (k(s + 1) + 1)-layer (Pred+2 ∪
Predq, δ)-HRGCN � such that �true[GRq(K)] = q[K∗] for each KG K over Pred.

We emphasise that many completion functions that one may find in practice
will have small values of s and k, thus making k(s + 1) + 1 significantly smaller
than L. Therefore (for large enough L) KG augmentation allows us to reduce the
number of layers that an HRGCN instance in our approach requires to capture
the goal function gq—that is, to capture query q on incomplete KGs.
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Table 1. Benchmark statistics, where ||q|| and h(q) are the number of atoms and height
of the tree-CQ, and ‘pos./neg.’ stands for ‘number of positive / negative examples’

Benchmark |Pred| ||q|| /h(q) train: pos./neg test: pos./neg.

WatDiv-Q1 158 8 / 4 2114 / 699699 1085 / 349877

WatDiv-Q2 158 8 / 3 3258 / 698396 1769 / 349119

WatDiv-Q3 158 8 / 3 1520 / 700276 798 / 350165

WatDiv-Q4 158 10 / 4 2397 / 698986 1226 / 349546

WatDiv-Q5 158 10 / 4 6338 / 693988 2866 / 347570

WatDiv-Q6 158 10 / 4 7545 / 692439 3744 / 346290

FB15k237-Q1 237 7 / 4 1185 / 1180 395 / 395

FB15k237-Q2 237 7 / 4 650 / 660 220 / 220

FB15k237-Q3 237 5 / 4 860 / 870 290 / 290

6 Implementation and Evaluation

We have implemented our approach to the IQA task over incomplete KGs using
Python 3.8.10, RDFLIB 6.1.1, and PyTorch 1.11.0 in a system called GNNQ.
We then evaluated several instances GNNQL of GNNQ using KG augmentation,
parametrised by the number L of layers of the underlying HRGCN, on a num-
ber of benchmarks. To the best of our knowledge, no existing system can solve
the IQA task (in particular, can deal simultaneously with KG incompleteness,
complex queries, and the inductive setting); thus, we compared the instances
GNNQL against instances GNNQ−

L of GNNQ that do not use KG augmentation,
which we treat as baselines. Our experiments show that the GNNQL instances
significantly outperform the GNNQ−

L instances, even if the RGCNs underlying
the latter use more layers. Thus, we conclude that KG augmentation can pro-
vide a significant advantage in solving the IQA task in practice. All experiments
were performed on a machine equipped with an Intel R© CoreTM i9-10900K CPU,
64GB of RAM, running Ubuntu 20.04.4, and a Nvidia GeForce RTX 3090 GPU.

6.1 Benchmarks

The existing benchmarks for query answering on KGs used in the QE litera-
ture [4,9,11,17,18,20] are designed for the transductive setting, so we cannot
use them for an informative comparison of systems addressing the IQA task.
Thus, in order to evaluate GNNQ instances, we have designed nine novel IQA
benchmarks. Six of these, called WatDiv-Qi, for i ∈ {1, . . . , 6}, are based on syn-
thetic KGs generated with the WatDiv framework [3], and the remaining three,
called FB15k237-Qi, for i ∈ {1, 2, 3}, are based on subgraphs of FB15k-237 [6],
a real-life KG commonly used in benchmarks for evaluation of KG completion
and QE systems. Each of our benchmarks provides the following:
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– a set Pred of unary and binary predicates and a tree-CQ over Pred;
– sets of examples for training (including validation) and testing; each example

is of the form (K, a, Ans) where K is a KG over Pred, a is a constant, and
Ans ∈ {0, 1} is the ground-truth answer.

The benchmarks are constructed so that the ground-truth answer of an exam-
ple is 1 if and only if a ∈ q[K∗], where ·∗ is a hidden completion function over
Pred, which is not given as part of the benchmark. For all our benchmarks,
·∗ is defined by appropriately constructed Datalog rules [2]; such an approach
allows us to capture structural dependencies of KGs, which are best-fitted for
the inductive setting [23]. Table 1 summarises the statistics of our nine bench-
marks. Further details about the selection of queries, completion functions, and
examples for each benchmark are provided in the supplemental material.

6.2 GNNQ Implementation

Using a set of predicates Pred and a tree-CQ q(x) as parameters, each GNNQL

processes a KG K over Pred and a candidate constant a ∈ Const(K) by perform-
ing the following steps, implementing (and specifying) our approach.

Step 1. Each GNNQL computes a partial augmentation R′
q(K) of K with respect

to some subset R′
q ⊆ Rq specified as follows: for the FB15k237-Qi benchmarks,

we take R′
q = Rq; in contrast, for the WatDiv-Qi benchmarks, we take R′

q

as the subset of all rules in Rq with at most 4 variables. We selected such R′
q

because, on the one hand, the FB15k237-Qi benchmarks are relatively irregular,
so we expect that even with full augmentation only a relatively small number of
augmentation facts will be generated; on the other hand, the WatDiv-Qi bench-
marks are highly regular, which suggests that performance may be hampered if
we perform full augmentation, as this will derive many similar facts, which may
cause problems analogous to over-smoothing. Each GNNQL then encodes R′

q(K)
as a (Col, δ)-hypergraph GR′

q(K) with appropriate Col and δ (see Sect. 4.2).

Step 2. Each GNNQL applies, to GR′
q(K), a (Col, δ)-HRGCN � with L layers,

dimensions (δ0, . . . , δL) such that δ0 = δ and δL = 1, and the following compo-
nents. Functions Aggr� and Comb� for each layer � ∈ {1, . . . , L} of � are defined
so that the feature vector of each node v is updated as

v� = σ�
(
C�v(�−1) +

∑
c∈Col

∑
(u1,...,ukc )∈Nc

GR′
q(K)

(v)

A�
c[u

(l−1)
1 , . . . ,ukc

(l−1)]

|N c
GR′

q(K)
(v)| + b�

)
,

where σ� is a element-wise leaky ReLU for each � ∈ {1, . . . , L − 1} and the
element-wise sigmoid function if � = L; where every C� and A�

c, for each
colour c ∈ Col, are (learnable) real-valued matrices of dimension δ� × δ�−1 and
δl × (kcδ

(l−1)), respectively, for kc +1 the arity of c, and each b� is a (learnable)
real-valued bias vector of dimension δ�; and where [u�

1, . . . ,u
�
kc

] is the vector
obtained by concatenating u�

1, . . . ,u
�
kc

. The classification function maps x ∈ R
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Table 2. Results for WatDiv-Qi benchmarks in the format precision/recall/AP

WatDiv-Q1 WatDiv-Q2 WatDiv-Q3 WatDiv-Q4 WatDiv-Q5 WatDiv-Q6

GNNQ−
h−1 .648/ .646/ .678 .655/ .722/ .661 .652/ .731/ .729 .660/ .590/ .653 .733/ .724/ .780 .555/ .614/ .578

GNNQ−
h .742/ .707/ .771 .819/ .852/ .881 .680/ .787/ .784 .791/ .700/ .798 .696/.933/ .860 .625/ .840/ .733

GNNQ−
h+1 .621/.856/ .750 .919/.920/.969 .742/.835/ .807 .770/ .804/.829 .865/ .924/.925 .852/.815/.877

GNNQh−1 .737/ .721/ .815 .779/ .820/ .858 .700/ .806/ .793 .717/ .783/ .806 .743/ .833/ .885 .736/ .619/ .700

GNNQh .806/ .772/.870 .821/ .830/ .906 .797/ .791/.847 .714/.839/ .827 .876/ .852/ .924 .763/ .705/ .784

to 1 if and only if x ≥ 0.5. The feature vector dimensions δ1 = · · · = δL−1 and
the negative slope of the ReLU activations are tuneable hyperparameters.

Step 3. The model returns 1 if a ∈ �true[GR′
q(K)] and 0 otherwise.

The baselines GNNQ−
L follow the same procedure, except that they skip KG

augmentation and use K instead of R′
q(K), thus relying on vanilla RGCNs [19].

For each benchmark, we trained and evaluated the GNNQL instances for each
L ∈ {h − 1, h} and the GNNQ−

L instances for each L ∈ {h − 1, h, h + 1}, where h
is the height of the benchmark’s tree-CQ. Before training, we randomly split the
benchmark’s training-and-validation set of examples into training and validation
sets with ratio 1:1 or 2:1, in case of a WatDiv or a FB15k237 benchmark,
respectively. In each training run (on the training set), we trained all model
parameters for 250 epochs using the Adam optimiser and a standard binary
cross-entropy loss computed using the value of the (1-dimensional) feature vector
in the last layer of the model as the prediction value (i.e., without applying the
classification function). Each training run is specified by hyperparameters: the
learning rate from {.0001, .0006, . . . , .1001}, the negative slope of the leaky-
ReLU activation functions from {.001, .006, . . . , .101}, and the latent feature
vector dimension from {8, 9, . . . , 64}. We report results for the hyperparameter
values maximising the average precision on the validation set, which are found
by means of 100 training runs using Optuna (MedianPruner) with 5 warm-up
runs, 30 warm-up epochs in every run, and step size 25.

6.3 Performance Metrics

For each benchmark, we evaluated all the (best of the) trained models over
the test set. For each model, we recorded the numbers tp, tn, fp, fn of true
positives, true negatives, false positives, and false negatives, respectively, and
report the precision tp/(tp + fp) and recall tp/(tp + fn) metrics. Furthermore,
to test the robustness of our models under variations to the threshold used in
the classification, we modified each learned model by removing the application
of the classification function, so that each modified model returns the real value
labelling the node for the candidate constant in the last layer. We then applied
the modified models to the test set, and used the outputs to compute the average
precision (AP), which is the area under the precision-recall curve.
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Table 3. Results for the FB15k237-Qi benchmarks in the format precision/recall/AP

FB15k237-Q1 FB15k237-Q2 FB15k237-Q3

GNNQ−
h−1 .582/ .451/ .554 .569/ .618/ .544 .550/ .648/ .518

GNNQ−
h .606/ .382/ .581 .603/ .559/ .557 .588/ .621/ .579

GNNQ−
h+1 .766/ .597/ .742 .624/ .505/ .580 .556/ .731/ .593

GNNQh−1 .903/ .873/ .958 .641/ .650/.757 .766/ .769/ .889

GNNQh .919/.922/.976 .643/.664/ .670 .822/.828/.933

6.4 Results

We report the results of our experiments for the WatDiv-Qi and FB15k237-
Qi benchmarks in Tables 2 and 3, respectively. As one can see, the GNNQL

instances outperform the GNNQ−
L instances on almost all benchmarks, when

comparing instances whose HRGCN has the same number of layers. Further-
more, the GNNQL instances with the smallest number of layers outperformed
all GNNQ− instances by a significant margin on the FB15k237-Qi benchmarks.
We attribute this to the fact that the real-world KGs are more noisy than the
synthetic ones, and the baselines are more vulnerable to noise since they must
learn longer dependencies. These results confirm our hypothesis that augmenting
input KGs with facts representing the parts of the KG that satisfy connected
query fragments can lead to improved empirical performance in the IQA task.

7 Related Work

KG Completion, which predicts missing facts in a KG, is a central soft reasoning
task on KGs. Existing KG completion approaches can be classified in two cat-
egories. Transductive KG completion models learn an embedding function that
maps constants and predicates in a fixed KG to elements of a vector space. At
inference time, a missing target fact can then be verified by first applying the
embedding function to the predicate and constants used in the target fact, and
then applying a fixed scoring function to the resulting embeddings [1,6,7,21,27].
Inductive KG completion assumes only a fixed set of predicates, and a trained
model can be applied to any KG over these predicates. Many inductive KG com-
pletion approaches use GNNs [10,14,23,24], which can reason over the structure
of KGs and are therefore inductive by design.

Query Embedding (QE) aims to answer monadic queries from various classes
over the completion of an arbitrary but fixed KG. Common QE approaches
are inspired by embedding-based KG completion methods [4,9,11,17,18,20]. To
produce query answers that are not logically entailed, such QE models usually
jointly learn embedding functions for constants and for queries during training.
At inference time, a QE model first embeds the input query using the learnt
embedding functions and then scores constants as potential answers based on
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the distance of their embeddings to the query embedding. Thus QE approaches
aim to answer arbitrary queries over the predicates and constants of a fixed KG.
This is orthogonal to our inductive setting, which assumes a fixed query but is
applicable to arbitrary KGs (over a predefined set of predicates).

Connection of Logic and GNNs. The increasing interest in GNNs across different
domains has motivated the theoretical analysis of the expressiveness and limi-
tations of GNNs. For example, it is trivial to see that GNNs cannot distinguish
between two non-isomorphic k-regular graphs of the same size with uniform
node features. Further analysis connected GNNs to the family of well-known
Weisfeiler-Lehman (WL) graph isomorphism tests; in particular, Xu et al. [26]
and Morris et al. [15] independently showed that the most expressive GNNs can
distinguish the same nodes as the 1-dimensional WL test and hence between the
same nodes as formulas in FOC2, the two-variable fragment of the first-order
logic with counting quantifiers. Further deep connections between various logics
and GNNs have recently followed these works [5,8,22], and we anticipate that
these results are paving a path for future efficient neuro-symbolic AI approaches
to many tasks in data and knowledge management.

8 Conclusion and Future Work

In this paper, we presented a novel neuro-symbolic approach to query answer-
ing over incomplete KGs. In contrast to existing embedding-based approaches,
which assume a fixed KG, our approach is inductive—that is, it only relies on a
fixed set of predicates and is thus applicable to arbitrary KGs over these pred-
icates. Our approach proceeds in three phases. First, it uses symbolic rules to
augment the input KG with facts representing subgraphs that match connected
fragments of the query. Second, it encodes the augmented KG into a hypergraph
with vector-labelled nodes. Third, it processes the hypergraph using a Hyper-
Relational Graph Convolutional Network (HRGCN), a novel GNN architecture
which generalises the well-known RGCN architecture. We then provided a the-
orem showing that the KG augmentation phase can considerably reduce the
number of layers a HRGCN-based system needs to produce correct answers to a
query on every KG. Finally, we implemented our approach in the GNNQ system
and evaluated it on several novel benchmarks. Our experiments showed that KG
augmentation indeed leads to improved empirical performance in the IQA task.
The main challenge for future work is extending our approach to support more
expressive queries. We shall also investigate the queries and completion functions
that can be perfectly captured by our approach and its potential extensions.

Supplemental Material Statement. A proof of Theorem 1 as well as details
about the creation of the benchmark datasets can be found in the supplemen-
tary material. This material, together with the source code of GNNQ, the bench-
marks, and the instructions for the reproduction of our experiments are accessible
through Github (https://github.com/KRR-Oxford/GNNQ).

https://github.com/KRR-Oxford/GNNQ
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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