
LODChain: Strengthen the Connectivity
of Your RDF Dataset to the Rest LOD

Cloud

Michalis Mountantonakis1,2(B) and Yannis Tzitzikas1,2

1 Institute of Computer Science - FORTH-ICS, Heraklion, Greece
{mountant,tzitzik}@ics.forth.gr

2 Computer Science Department, University of Crete, Heraklion, Greece

Abstract. It is not an easy task for a data owner to publish a dataset
as Linked Data with connections to existing datasets since there are too
many datasets, thus it is hard to find the related ones, to download
them and to check their content (let alone to apply entity matching
over them). However, the connections with other datasets are important
for discoverability, browsing, and querying in general. To alleviate this
problem in this paper we introduce LODChain, a service that can help a
provider to strengthen the connections between his/her dataset and the
rest of datasets. LODChain finds the common entities, schema elements
and triples among the dataset at hand and hundreds of LOD Datasets
and through equivalence reasoning it suggests to the user various inferred
connections, as well as related datasets. In addition, it detects erroneous
mappings, and offers various content-based dataset discovery services,
for enabling the enrichment of datasets’ content. The key difference with
the existing approaches is that they are metadata-based, while what we
propose is data-based. We present an implementation of LODChain, and
we report various experimental results over real and synthetic datasets.

Keywords: Linked data · Connectivity · Dataset search · Data
discovery

Resource Type: Software Service.
Resource URL: https://demos.isl.ics.forth.gr/LODChain.
Permanent URL: https://doi.org/10.5281/zenodo.6467419.

1 Introduction

An increasing number of datasets are published through Linked Open Data
(LOD) principles, i.e., over 10,000 datasets [24]. For making a new RDF dataset
more discoverable and reusable, for improving its trustworthiness and for enrich-
ing its content, several tasks should be executed before its actual publishing to
the web. Indeed, it is a prerequisite to discover existing datasets, to create con-
nections with them, through equivalence relationships such as owl:sameAs, to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 537–555, 2022.
https://doi.org/10.1007/978-3-031-19433-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19433-7_31&domain=pdf
https://doi.org/10.1007/978-3-031-19433-7_31

538 M. Mountantonakis and Y. Tzitzikas

check the quality of such relationships and to create rich metadata. These tasks
can be assisted at large scale through existing approaches; for discovering and
exporting relevant datasets through metadata-based services like http://lod-
cloud.net [19] or Google Dataset Search [6], for transforming and querying data
[11,34], for creating schema and instance mappings [8,30], for quality assessment
[28,48], for finding all the URIs of a given entity [22,39] and others.

However, the huge volume of LOD datasets makes it difficult to discover
every possible relevant dataset, especially given that a) existing approaches for
publishing RDF datasets do not favor their discoverability and reusability; e.g.,
[10] states that “up till now, data consumers could, painfully, crawl or search the
LOD cloud diagram for a potential dataset”, and b) Dataset Search engines rely
on metadata and ignore the actual content of datasets [7]. Also, even if one has
discovered and fetched the content of all the datasets, it would be very costly
and time consuming to find commonalities with these datasets at scale, to create
mappings and to check their quality. Such Data Integration tasks usually require
manual work, thus huge human effort, if applied at scale, as well as high storage
and computational capacity, which can be prohibitively expensive [24].

Due to these limitations, the major target of LOD, i.e., linking and integra-
tion [5], has not been yet reached. Indeed, LOD Cloud is sparsely linked; publish-
ers tend to connect their datasets with few and popular datasets and ontologies
[2,22], and “LOD Cloud is at risk of becoming a museum for datasets” [10].
Hence, there is a high need for services that can strengthen the connectivity
of a dataset to the rest of LOD Cloud. To alleviate this problem, we introduce
the research prototype LODChain, which receives a dataset, e.g., before its actual
publishing, computes the transitive and symmetric closure of its owl:sameAs (for
entities), owl:equivalentProperty (for properties) and owl:equivalentClass
(for classes) relationships with hundreds of LOD datasets, i.e., those indexed
by LODsyndesis KB [25], and offers connectivity and enrichment services. For
a new dataset, say Dnew, LODChain a) spots errors in equivalence mappings, b)
infers new mappings, connections and all the common elements, e.g., entities
and triples, between Dnew and LOD datasets, c) discovers its K most relevant
datasets, and d) enriches Dnew, e.g., for offering advanced query capabilities.

Comparing to large-scale services, like LODsyndesis [22,25] or LODlaundro-
mat [34], to the best of our knowledge LODChain is the first service for strength-
ening the connectivity of an RDF dataset to the rest of LOD Cloud, at any time,
even before its actual publishing. In [26], we described a preliminary version of
LODChain providing analytics only for the entities of Cultural Heritage datasets.
In this paper, we introduce the current version of LODChain, which also leverages
the schema and the triples of a dataset of any domain and offers more connec-
tivity analytics and services. We present use cases showcasing its impact for the
discoverability, reusability and trustworthiness of a dataset, and the process of
LODChain, including methods for computing the owl:sameAs closure between a
new dataset and the precomputed inference (of 45 million owl:sameAs mappings)
from hundreds of LOD datasets. Finally, we provide comparative results for the
effectiveness and the efficiency by using 5 real and 2 synthetic datasets, indica-
tively, we obtained at least 450% increase to the connections of real datasets.

http://lod-cloud.net
http://lod-cloud.net

LODChain: Strengthen the Connectivity of Your RDF Dataset 539

The rest of the paper is organized as follows. Section 2 introduces the
related work, whereas Sect. 3 presents several use cases by using the real dataset
WW1LOD [18] containing historical data about World War I. Section 4 presents
the process of LODChain, while Sect. 5 provides comparative results for its effi-
ciency and effectiveness. Finally, Sect. 6 concludes the paper and identifies direc-
tions for future research.

2 Related Work

Several approaches have been proposed for aiding the creation, integration and
publication of an RDF dataset, see a recent survey [24] for more details. Here, we
focus on a) large scale services for hundreds or even thousands of RDF datasets,
b) dataset search and discovery approaches and c) data enrichment approaches,
which can be exploited for strengthening the connectivity of a dataset.

Large Scale Services for Multiple RDF Datasets. First, LODLaundro-
mat [34] offers data cleaning and transformation for thousands of RDF docu-
ments, whereas LOD-a-lot [11] provides a single integrated file containing the
documents of LODLaundromat, for enabling their reusability and for offering
more advanced query capabilities. Moreover, there are services for finding all
the datasets of a given URI, e.g., WIMU [39] and LODsyndesis [23,25], all the
equivalent URIs of a given URI, such as MetaLink [3] and LODsyndesis, i.e.,
by computing the transitive closure of millions of owl:sameAs mappings, and
approaches for detecting erroneous owl:sameAs links [31,40]. Such services can
be exploited from the publisher of a new dataset, for enriching the connectivity
of their dataset, e.g., by adding inferred links, and for checking its quality.

RDF Dataset Search and Discovery. Existing services, such as LOD Cloud
(http://lod-cloud.net), Google Dataset Search [7], LODatio [12] and LODAt-
las [32], provide metadata-based search for discovering relevant RDF datasets,
whereas [44] evaluates different snippet generation algorithms that can be used
for performing RDF Dataset Search for thousands of datasets. Furthermore, [29]
introduces a framework for content-based similarity dataset discovery, by using
external knowledge bases (e.g., Wikidata), whereas LODsyndesis offers content-
based dataset discovery for finding the most relevant datasets to a given one.

RDF Dataset Enrichment. There are several approaches introducing meth-
ods (and their importance) for enriching the content of datasets for several
domains, e.g., for tourism [35,46], for Open City Data [4] or for marine domain
[37]. Additionally, one can enrich the data for a given entity, by visiting derefer-
encable equivalent URIs, e.g., through services like Metalink or LODsyndesis, by
using instance matching tools, e.g., Silk [42], by exploiting link-traversal queries
[38], or through SPARQL queries to the endpoints of relevant datasets. A catalog
of SPARQL endpoints is available from SPARQLES [41] and SpEnD [47].

Comparison with Existing Approaches. Concerning the mentioned works,
a) the process of large-scale services (e.g., [25,34]) is done periodically for a

540 M. Mountantonakis and Y. Tzitzikas

high number of open datasets, i.e., it is infeasible to exploit the offered services
for unpublished data or for closed linked data, as big organizations/companies
maintain (e.g., [14]), b) the dataset search services (e.g., [7,32]) are metadata-
based, and c) the data enrichment approaches are either domain specific (e.g.,
[35,37]), or require additional effort for discovering enriched data (e.g., [3]). On
the contrary, to the best of our knowledge, LODChain is the first service that
can be used by a publisher at any time, for strengthening the connectivity of a
dataset (of any domain) by providing content-based connectivity analytics and
enrichment to the rest of LOD datasets. Thereby, it can be used for unpublished
or “closed” data, without needing to download any software or to fetch any RDF
dataset.

Fig. 1. Typical approach versus the LODChain approach for publishing an RDF dataset

3 Data Publishing - Typical Approach Versus LODChain

We define the user categories that can have access to a given RDF dataset:
i) data owners (publishers), i.e., people, organizations, universities, etc., that
are the creators and owners of a given dataset, ii) a special group of interest,
i.e., certain individuals, e.g., people, services, within an organization, a research
project, etc., iii) users (or services), i.e., any user on the web like publishers of
other datasets, or services that have access or/and reuse the content of a dataset.
This category is a superset of the previous two, i.e., publishers and special group
of interest. Figure 1 shows the typical approach of publishing an RDF dataset.
Indeed, a data owner describes the desired data in RDF format, creates mappings
with usually few RDF datasets and after assessing its quality, e.g., through
competency queries [45], he/she produces the final version. For achieving this
target, more steps are usually required, e.g., data conversion, transformation,
etc. [24]. Afterwards, the final version is published, either to an open domain
(e.g., to LOD Cloud) which can be publicly accessible, discoverable and reusable
from any user/service on the web (for performing an analysis, for creating an

LODChain: Strengthen the Connectivity of Your RDF Dataset 541

application, etc.), or to a closed domain, i.e., these benefits are provided to a
special group of interest.

Concerning the process of LODChain (lower part of Fig. 1), it receives an RDF
dataset, e.g., before its actual publishing, for checking and improving its connec-
tivity to the LOD Cloud and for enriching its content (by exploiting LODsynde-
sis). The target is to increase the benefits of publishing a dataset for any category
of users. Below, we present how LODChain can contribute to these benefits (lower
right side of Fig. 1), by showing a scenario with a real dataset.

Benefits of LODChain for Data Publishing (Use Cases). We describe use
cases by following the steps of the lower side of Fig. 1. For the introduced scenario,
we use the small real dataset WW1LOD [18]. It contains data about World War
I and includes 47,616 triples and 547 sameAs mappings to 5 RDF datasets,
including popular ones, such as DBpedia [16] and GeoNames (more statistics are
given in §5). For checking more cases, we use a synthetic version of WW1LOD,
say WW1LODsynt, where we have added 50 erroneous owl:sameAs mappings.
The scenario starts when the data owner decides to use LODChain for improving
the connectivity of his dataset, before its actual publishing. We suppose that
the first version of the dataset is WW1LODsynt (upper left side of Fig. 2). We
show how the lifecycle of WW1LODsynt can be changed by using LODChain, and
for each Use Case (UC) we indicate its potential impact. The use cases are also
presented in an online video (https://youtu.be/Kh9751p32tM).

Fig. 2. A scenario with 5 use cases by uploading a new dataset to LODChain

UC1. Error Detection and Corrections. The publisher uploads the ver-
sion WW1LODsynt to LODChain, which informs the publisher that there are 50

https://youtu.be/Kh9751p32tM

542 M. Mountantonakis and Y. Tzitzikas

possible erroneous mappings, and provides a list containing these errors (upper
side of Fig. 2). The publisher downloads the list for correcting the mappings
and for creating the version WW1LOD. Without checking the quality of equiva-
lence relationships, which is quite difficult at scale [24], it can result in erroneous
relationships, which can negatively affect the trustworthiness of a publisher.

UC2. How Connected is My Dataset? The scenario continues by uploading
the version WW1LOD. LODChain analyzes the dataset, informs the publisher
that there are no errors, and it offers several connectivity analytics. Some of
these real results are shown in UC2 of Fig. 2, i.e., we inferred 2,172 owl:sameAs
relationships (397% increase), which resulted to 25 new connections, i.e., 500%
increase, since the initial version had only 5 connections. In Fig. 2 (and also in
Fig. 1) the inferred connections are depicted as edges/nodes with green color
and the old connections with red color, whereas the label of each edge indicates
the number of their common entities. Except for finding new connections with
popular datasets (e.g., Wikidata [43], YAGO [33]), which is expected due to tran-
sitivity (they share millions of entities with DBpedia), it is feasible to discover
connections with not so popular datasets that were unknown to the publisher.
As regards dataset discovery and selection, indicatively Fig. 2 shows the best
triad of datasets offering a) the most common entities and b) the most comple-
mentary triples for WW1LOD entities. We suppose that the publisher exports
all the inferred data and analytics for reusing them (i.e., version WW1LODenr),
although one can decide to use any subset of these enriched data.

UC3. Publishing the Enriched Dataset to LOD Cloud. Suppose that the
publisher decides to upload the enriched version WW1LODenr, including all the
inferred equivalence mappings and connectivity analytics, to LOD Cloud (see
UC3 in Fig. 2). Below, we explain the possible impact for any users’ category.

UC4. Advanced Query Capabilities, Enrichment and Verification. We
mention the benefits of using LODChain for the data owner or/and for a special
group of interest. By enriching WW1LOD through multiple datasets, more com-
plex queries can be answered, such as the following: “Give me the politicians
that were related to first World War, they have won a Nobel prize and option-
ally information for the books that they have written” (UC4 in Fig. 2). That
query requires data from several datasets, e.g., for “Theodore Roosevelt”, which
is a possible answer, the first part can be answered from WW1LOD (http://ldf.
fi/ww1lod/96403a6a), the second (nobel prizes) from Wikidata (https://www.
wikidata.org/wiki/Q33866), and the third (books) from the National Library of
Germany (http://d-nb.info/gnd/118749633). Although WW1LOD was not con-
nected to Wikidata and the National Library of Germany (Fig. 2), LODChain
inferred and added these connections in the enriched version.

However, it is not always feasible to export and use all the relevant datasets
due to huge data volume, thereby, LODChain also offers services for selecting the
K most relevant datasets for a desired task. For example, two possible tasks are
to find the combination of K = 3 datasets providing i) “the most complementary
triples for the entities of WW1LOD” (UC4 in Fig. 2), i.e., for data enrichment, or
ii) “the most common entities with WW1LOD”, i.e., for data verification. From

http://ldf.fi/ww1lod/96403a6a
http://ldf.fi/ww1lod/96403a6a
https://www.wikidata.org/wiki/Q33866
https://www.wikidata.org/wiki/Q33866
http://d-nb.info/gnd/118749633

LODChain: Strengthen the Connectivity of Your RDF Dataset 543

the 30 connected datasets, there exists 4,060 combinations of 3 datasets, thereby,
it is quite expensive to check any possible combination. However, by exploiting
the precomputed results of LODChain, one can find very fast the K = 3 most
relevant datasets for a task (e.g., UC4 in Fig. 2). These examples indicate the
impact of LODChain for the dataset selection process, i.e., the K most relevant
datasets differ according to the desired needs, even for the same dataset.

UC5. Dataset Search, Discoverability and Reusability. Here, we mention
the benefits for any user/service (in case of open data). Suppose that publish-
ers of other datasets periodically check the LOD Cloud for discovering relevant
datasets to their dataset, that were recently published, or an automated service
informs them when a new dataset is connected with their dataset. E.g., in UC5
of Fig. 2, the publisher of VIAF desires to find datasets having a) common enti-
ties with VIAF and b) information about World Wars, i.e., for enriching or for
verifying their content. They observe that WW1LOD not only covers this topic,
but also has 369 common entities with VIAF, thereby they decide to use it.
Without LODChain, it would be extremely difficult for most publishers (25 out
of 30) to discover that WW1LOD is relevant to their dataset (and to reuse it),
e.g., the first version of WW1LOD did not have links to VIAF.

4 LODChain: Connecting Your Dataset to the LOD Cloud

First, we describe LODsyndesis (which is used from LODChain), and then the
steps of LODChain, by showing a running example of how to strengthen the
connectivity of a new dataset, i.e., Dnew (upper left part of Fig. 3). For finding
new connections for Dnew, it is prerequisite Dnew to contain links to at least
one dataset, e.g., in Fig. 3, Dnew is connected with 2 datasets: DBpedia and
Wikidata. Indeed, we do not perform instance and schema matching, but we infer
new connections by computing the closure of equivalence mappings among Dnew

and the rest of LOD datasets. Finally, the data of Dnew are saved temporarily
in LODsyndesis indexes for a user session for producing the desired output.

4.1 LODsyndesis Aggregated Knowledge Graph

LODChain is based on LODsyndesis [25], which is an Aggregated Knowledge Graph
derived by aggregating the content of datasets, computing the transitive and
symmetric closure of 45 million equivalence relationships, and offering semantics-
aware indexes and services for over 412 million entities and 2 billion triples
from 400 LOD datasets. Concerning the quality of the mentioned closure, it
has been evaluated in a semi-manual way in our past work [20]. Afterwards,
LODsyndesis keeps a unique representation for each real world entity, property
and class, while also storing their provenance. The lower right side of Fig. 3
shows a graph representation of the LODsyndesis data about the Greek composer
“Mikis Theodorakis”. LODsyndesis has precomputed the owl:sameAs closure
for “Mikis Theodorakis” URIs, has stored their provenance, and has replaced all
these URIs by a single internal URI (see the single node for M. Theodorakis).
The same process has been done for all the entities (e.g., “Paris”), properties

544 M. Mountantonakis and Y. Tzitzikas

(e.g., “bornYear”) and so forth. Regarding the triples (i.e., facts), it stores at the
same place in the index, all the triples of an entity occurring either as a subject
or as an object, and their provenance. Thereby, triples having entities as objects
are stored twice in the index. The lower right side of Fig. 3 shows the triples for
M. Theodorakis and their provenance (see the bold text under each node).

4.2 The Steps of LODChain

Step A. Input. LODChain supports many formats: NTriples, NQuads,
RDF/XML and Turtle (by using the RDF4J library https://rdf4j.org/). The
publishers just give a link of their dataset in one of these formats. They can
optionally type the title and domain of their dataset and can select to perform
the process only for a subset of their dataset (e.g., 10,000 triples) for having a
very fast overview.

Step B. Computation of Equivalence Relationships Closure and Prove-
nance. The objective is to detect which real world objects are a) common in
Dnew and LODsyndesis, b) unique in Dnew, and to detect c) errors in the equiv-
alence relationships of Dnew. LODChain reads the triples of Dnew, collects all
the owl:sameAs, owl:equivalent Property and owl:equivalentClass rela-
tionships and partitions the URIs in three sets: entities, properties and classes.

Fig. 3. Running example. The steps of LODChain for a new dataset Dnew

B1. Local Computation of Closure in Dnew. For each type of these URIs
and equivalence relationships, we use the signature-based algorithm proposed
in [22], for computing the transitive and symmetric closure of the equivalence
relationships of Dnew. Then we store all the URIs of Dnew referring to the

https://rdf4j.org/

LODChain: Strengthen the Connectivity of Your RDF Dataset 545

same real world object in the same local “cluster” (i.e., class of equivalence). At
the end, the set C(Dnew) is created, which includes all the “local” clusters of
Dnew (which are pairwise disjoint). For an entity e in Dnew we shall use loc(e) ∈
C(Dnew) to denote the local cluster including the URIs of e, e.g. the local cluster
of “M. Theodorakis” (Step B1 of Fig. 3) contains 3 URIs, loc(e) = 〈dnew:M.
Theodorakis, dbp:Mikis Theodorakis, wkd:Q151976〉. Finally, for the URIs that
are not part of any equivalence relationship, their cluster contains a single URI,
e.g., in Fig. 3 for the entity “Zorbas Dance”, loc(e) = {dnew : Zorbas Dance}.

B2. Computation of Closure Between Dnew and LODsyndesis. Here, we
merge the local “clusters” of Dnew, with the results of the precomputed closure of
LODsyndesis.We shall useC(LOD) to denote the set of all the clusters of LODsyn-
desis (which are pairwise disjoint), and glob(e) ∈ C(LOD) to denote the cluster
of entity e in LODsyndesis, e.g., for “Mikis Theodorakis” glob(e) = {dbp:Mikis
Theodorakis, wkd:Q151976, viaf:Theodorakis, yago:M. Theodorakis} (lower left
side of Fig. 3). Moreover, prov(e) denotes the provenance of e in LODsyndesis, e.g.,
for the mentioned entity prov(e) = {DBpedia,YAGO,Wikidata, VIAF}. Each
loc(e) ∈ C(Dnew) belongs to exactly one of the three below rules:

Rule 1. No Match Between Clusters: New Entities. Here, loc(e) does
not match with any global cluster of LODsyndesis, thereby the corresponding
entity exists only in Dnew, i.e., for a given loc(e) ∈ C(Dnew), � glob(e′) ∈
C(LOD) s.t. loc(e) ∩ glob(e′) �= ∅. In such a case, we add loc(e) to C(LOD).

Algorithm 1: Computation of Closure between Dnew and LODsyndesis
Input: Local Closure C(Dnew) and global closure C(LOD)
Output: The common and unique entities, and errors in owl:sameAs mappings
1 uniqEnt ← ∅, cmnEnt ← ∅, errors ← ∅
2 forall loc(e) ∈ C(Dnew) do // for each local cluster

3 globnew(e) ← ∅ // init. the new global cluster of e
4 forall u ∈ loc(e) do // For each URI u of local cluster

5 if u ∈ glob(e′), glob(e′) ∈ C(LOD) then // If u in LODsyndesis

6 if globnew(e) ≡ ∅ then // 1st global cluster for e
7 globnew(e) ← glob(e′) // Store the global cluster

8 else if globnew(e) �= glob(e′) then // 2nd global cluster for e
9 delete globnew(e) // Delete e, matches 2 glob. clusters

10 errors ← errors ∪ {loc(e)} // Add loc(e) to errors

11 break and go to line 2 // Continue with the next loc(e)

// After finishing with all the URIs of loc(e)
12

13 if globnew(e) ≡ ∅ then // No global cluster found

14 globnew(e) ← loc(e) // loc(e) is the global cluster of e
15 uniqEnt ← uniqEnt ∪ {e} // Add e to unique entities

16 prov(e) ← Dnew // Store its provenance

17 else if globnew(e) �= ∅ then // A single global cluster found

18 globnew(e) ← globnew(e) ∪ loc(e) // Update global cluster of e
19 cmnEnt ← cmnEnt ∪ {e} // Add e to common entities

20 prov(e) ← prov(e) ∪ {Dnew} // Update its provenance

21 return cmnEnt, uniqEnt, errors

546 M. Mountantonakis and Y. Tzitzikas

Rule 2. Single Match Between Clusters: Inferring New Relationships.
If a given loc(e) ∈ C(Dnew) matches with exactly one glob(e′), i.e. if ∃! glob(e′) ∈
C(LOD) s.t. glob(e′) ∩ loc(e) �= ∅, then we assume that e ≡ e′, and we perform
the following operation: loc(e) ∪ glob(e′). In step B1 of Fig. 3, two URIs of the
local cluster, i.e., dbp:Mikis Theodorakis and wkd:Q151976, belong also to the
same global cluster in LODsyndesis (see the lower side of Fig. 3). By merging
these clusters (step B2 of Fig. 3), we inferred two new owl:sameAs mappings for
the URI “dnew:M. Theodorakis”, we updated its provenance, and we managed
to discover two new connections for Dnew, i.e., VIAF and YAGO.

Rule 3. Cluster Conflicts: Detecting Possible Errors. If a loc(e) ∈
C(Dnew) matches with two or more clusters of LODsyndesis, i.e., if
∃ glob(e1), glob(e2) ∈ C(LOD). s.t. glob(e1) ∩ loc(e) �= ∅ , glob(e2) ∩ loc(e) �=
∅ , glob(e1) �= glob(e2), then this is an indication of error. For instance, sup-
pose that we have added the following erroneous mapping in Dnew: 〈dnew:M.
Theodorakis, owl:sameAs, dbp:Theodore Roosevelt〉. Due to closure, in Step
B1 the result would be loc(e)={dnew:M. Theodorakis, dbp:Mikis Theodorakis,
wkd:Q151976, dbp:Theodore Roosevelt}. However, by proceeding to Step B2,
loc(e) would match with two clusters of LODsyndesis, i.e., the URIs dbp:Mikis
Theodorakis and dbp:Theodore Roosevelt refer to different entities and belong
to different global clusters. LODChain identifies such cases and informs the user.

Algorithm for Step B2. Algorithm 1 detects if there is zero, one or more
global clusters, that match with the URIs of loc(e), for finding common and
unique entities, and errors in the owl:sameAs mappings. Algorithm 1 reads each
loc(e) separately and iterates over all its URIs (lines 2–11). For each URI u, it
performs a binary search in LODsyndesis index (see line 5), for checking if it
occurs in a global cluster (i.e., if it exists in LODsyndesis). Concerning the rules,
for the local clusters belonging to Rule 1, the lines 6–11 will never be executed,
since there is not a global cluster containing at least one URI of loc(e). On
the contrary, the lines 13–16 will be executed and the entity e will be stored
as unique. Regarding Rule 2, the first time that we find a URI of loc(e) that
belongs to a global cluster, we retrieve and store the corresponding global cluster
(lines 5–7). In case of finding another URI(s) of loc(e) belonging to the same
global cluster, we just continue with the next URI of loc(e). At the end, lines
17–20 are executed for updating the global cluster of e (i.e., globnew(e)) and its
provenance, and for storing the entity as a common one. Concerning Rule 3, in
case of detecting a second different global cluster that matches loc(e), lines 8–11
are executed exactly one time, loc(e) is stored as an error and we continue with
the next loc(e). Finally, Algorithm 1 returns the common and unique entities,
and the sameAs errors.

This algorithm reads each URI u of Dnew once (i.e., each URI of Dnew

exists in exactly one local cluster), and then it performs a binary search for u in
LODsyndesis index. Therefore, its time complexity is O(|UDnew

| ∗ log(|ULOD|)),
where UDnew

are all the URIs of Dnew, ULOD are all the URIs in LODsyndesis,
and log(|ULOD|) is the cost of the binary search in LODsyndesis. On the other

LODChain: Strengthen the Connectivity of Your RDF Dataset 547

hand, it keeps in memory all the updated global clusters, containing the entities
of Dnew, i.e., its space complexity is O(

∑
∀loc(e)∈C(Dnew) |globnew(e)|).

How to Reduce the Number of Index Reads? A limitation is that |ULOD|
can be huge, i.e., LODsyndesis contains more than 412 million URIs. Although
we use a binary search (which is logarithmic in scale), we desire to further
decrease the cost of searching to the index of LODsyndesis. For this reason,
we exploit the prefixes of URIs, i.e., they usually indicate the company or
university that publishes the dataset (data owner). For instance, the prefix of
the URI “http://dbpedia.org/resource/Mikis Theodorakis” is “http://dbpedia.
org/”. We use the prefix index of LODsyndesis [22], which contains all the pre-
fixes for the URIs that are indexed in LODsyndesis, for checking very fast if a
URI occurs in at least one existing dataset. Indeed, we know that if the pre-
fix of a URI does not exist in the prefix index, the URI cannot be found in
LODsyndesis [22].

How to Use the Prefix Index: Since the size of the prefix index is quite
small compared to the index of LODsyndesis, i.e., it contains less than 1 million
prefixes, before executing the line 5 of Algorithm 1, we can search if the prefix of
URI u occurs in the prefix index (of LODsyndesis), and only if it is true, we can
perform a binary search for u in the index of LODsyndesis. Otherwise, we just
continue with the next URI. For further reducing the cost, even for searching in
the prefix index, and since prefixes are highly repeated in a given dataset (e.g.,
in our experiments, each dataset has on average only 23.6 prefixes), we keep
in memory the prefixes that we have already seen. As it is shown in §5, it can
highly reduce the execution time, i.e., even more than 5× for real datasets.

Algorithm 2: Merging the triples (facts) of Dnew with LODsyndesis
Input: The common entities cmnEnt and their triples in Dnew

Output: Common and unique triples of Dnew entities to LODsyndesis datasets
1 uniqTriples ← ∅, cmnTriples ← ∅
2 forall e ∈ cmnEnt do // Read each common entity e
3 forall 〈s, p, o〉 ∈ T (Dnew, e) do // Read each triple of e in Dnew

4 if 〈s, p, o〉 ∈ T (LOD, e) then // If triple exists in LODsyndesis

5 prov(〈s, p, o〉) ← prov(〈s, p, o〉) ∪ {Dnew} // Update provenance

6 cmnTriples ← cmnTriples ∪ {〈s, p, o〉} // Add to cmnTriples

7 else // Triple is offered only from Dnew

8 prov(〈s, p, o〉) ← {Dnew} // Store its provenance

9 uniqTriples ← uniqTriples ∪ {〈s, p, o〉} // Add to uniqTriples
10 T (LOD, e) ← T (LOD, e) ∪ {〈s, p, o〉} // Add to LODsyndesis

11 return uniqTriples, cmnTriples

Step C. Merging Triples of Dnew with LODsyndesis. Here, we merge the
triples for the common entities of Dnew to LODsyndesis, for finding common and
unique facts, and possibly complementary facts from other LOD datasets (data
enrichment). This is performed only for the common entities (Rule 2), since for
the entities belonging only to Dnew (Rule 1), we know that all their triples are

http://dbpedia.org/resource/Mikis_Theodorakis
http://dbpedia.org/
http://dbpedia.org/

548 M. Mountantonakis and Y. Tzitzikas

unique. We denote all triples having an entity e either as a subject or as an object,
in LODsyndesis as T (LOD, e) and in Dnew as T (Dnew, e). We desire to find for
each common entity e, a) the common triples in LODsyndesis, i.e., T (LOD, e)∩
T (Dnew, e), b) the unique triples of Dnew, i.e., T (Dnew, e) \ T (LOD, e), and
optionally c) the complementary triples to Dnew, i.e., T (LOD, e) \ T (Dnew, e).

Algorithm for Step C. Algorithm 2 shows how to compute the unique and
common triples. It receives as input the common entities (cmnEnt), and ∀e ∈
cmnEnt, it accesses its entry in LODsyndesis index through a random access
file mechanism. The pointer of the entry of each entity (in the index) has been
obtained from the binary search of the previous step (i.e., line 5 of Algorithm
1). Then, for each triple in T (Dnew, e), it checks if it occurs in LODsyndesis
(lines 3–10). If it is true, we update the provenance and we store the triple as
common (lines 4–6), otherwise, we add the unique triple to T (LOD, e) (lines
7–10). In the worst case, i.e., all the entities of Dnew are part of LODsyndesis,
we iterate and keep in memory all the entities and triples of Dnew, i.e., time and
space complexity is O(|cmnEnt|+ |T (Dnew)|). For finding complementary facts,
we can extend Algorithm 2 by also iterating over T (LOD, e). However, since it
can be expensive, for producing connectivity analytics we can use pre-computed
posting lists containing the provenance of each triple of e [25]. In step C of Fig. 3,
we updated the triples and we found common, complementary and unique facts
for Dnew, e.g., the fact “M. Theodorakis, bornYear, 1925” is verified from 3
other datasets, the fact “M. Theodorakis, educatedAt, Paris” is complement to
Dnew and the fact “M. Theodorakis, composer, Zorbas Dance” is offered only
by Dnew.

Step D. Connectivity Analytics and Enrichment Services. By using
the updated (temporal) LODsyndesis indexes and specialized lattice-based algo-
rithms (presented in [22,25]), we provide both connectivity and dataset discovery
content-based measurements (e.g., see Step D of Fig. 3). The algorithms exploit
the posting lists of an index (i.e., containing information about the provenance
of entities, triples, etc.) for computing content-based metrics among any combi-
nation of datasets, by solving the corresponding maximization problems [22,25].
LODChain offers connectivity analytics and data discovery services for the input
dataset, through several visualizations and HTML tables (e.g., UC2 of Fig. 2).

First, LODChain provides a list of possible errors in case of detecting erro-
neous owl:sameAs mappings (Rule 3 of step B2), that can be used for correct-
ing the mappings. Second, a plenty of connectivity metrics are computed and
visualized, i.e., a) the inferred equivalence mappings, b) common, unique and
complementary elements, i.e., how many entities, schema elements and triples of
Dnew exist in ≥ 1 other datasets, how many only in Dnew, and how many com-
plementary triples exist for the entities of Dnew, c) connections of Dnew due to
closure, i.e., the datasets having common entities with Dnew before and after the
computation of closure, d) top-10 connections of Dnew (separately for entities,
schema and triples), and many others. Regarding Dataset Discovery, LODChain
finds the K most relevant datasets to Dnew with common or complementary
elements. Third, it offers an enriched version of Dnew in RDF format having:

LODChain: Strengthen the Connectivity of Your RDF Dataset 549

all the common elements and their provenance, the inferred owl:sameAs map-
pings, complementary triples, and rich metadata, created through VoID [1] and
VoIDWH [21], that describe through triples the results of connectivity analytics.

Accessing LODChain and Sustainability Plan. LODChain is available in
https://demos.isl.ics.forth.gr/LODChain and is running on a common machine
with 8 cores, 8 GB memory and 60 GB disk space in okeanos service [13]. There
is no need to download any software for using it, and sample datasets are offered
in the webpage. Regarding its sustainability plan, LODChain can be used with
any updated version of LODsyndesis’ indexes, thereby, one major plan is to
investigate ways for aiding the update of LODsyndesis at least periodically.

5 Experimental Evaluation

The objective is to measure the efficiency of LODChain and to provide connec-
tivity analytics. We use a common machine with 8 cores and 8 GB memory,
which contains the indexes of LODsyndesis. These indexes include over 2 billion
triples and 412 million URIs from 400 RDF datasets, i.e., statistics are given in
[24,25]. Concerning the datasets, we use the 5 real and 2 synthetic RDF datasets
of Table 1. The real datasets include from 3K to 1.5M of triples, they contain
links to few other datasets, i.e., see more statistics in Sect. 5.2, and only a few
number of unique prefixes, i.e., on average 23.6 prefixes. Indeed, most of their
URIs contain a prefix that cannot be found in LODsyndesis. In the worst case
for real datasets, only 26.4% of URIs contain a prefix that occurs in LODsynde-
sis. We also use two synthetic datasets having the same number of triples, URIs
and owl:sameAs mappings, for evaluating two cases. In the first one (HiConn),
most URIs are part of LODsyndesis (highly connected), whereas in the sec-
ond (LowConn), most URIs and their prefix are new (almost disconnected from
LODsyndesis).

Table 1. The 7 evaluation RDF datasets (5 Real and 2 Synthetic)

ID Dataset (abbreviation) Domain # of Triples # of sameAs # of URIs # of URIs with prefix in
LODsyndesis

R1 GReek Children Art Museum
(GRC) [15]

User content 2,212 0 452 58 (12.8%)

R2 Geological TimeScale (GTS)
[9]

Geography 13,271 173 1,206 181 (15.0%)

R3 World War 1 LOD
(WW1LOD) [18]

Publication 47,616 547 11,690 2,191 (18.7%)

R4 MuziekWeb (MW) [17] Media 506,582 10,563 153,538 105,548 (6.8%)

R5 Persons of National Library
of Netherlands (PNLN) [36]

Publication 1,500,000 268,861 636,230 168,444 (26.4%)

S1 Synthetic 1 (HiConn) – 1,000,000 181,105 425,500 400,697 (94.1%)

S2 Synthetic 2 (LowConn) – 1,000,000 181,105 425,500 1,020 (2.3%)

https://demos.isl.ics.forth.gr/LODChain

550 M. Mountantonakis and Y. Tzitzikas

Table 2. Total execution time for each
dataset, with and without prefix index

Dataset w/o Prefix
index

With prefix
index

Achieved
speedup

GRC 7.47 s 5.26 s 1.41×
GTS 10.37 s 7.11 s 1.45×
WW1LOD 79.74 s 39.04 s 2.04×
MW 779.10 s 143.11 s 5.44×
PNLN 3,881.02 s 2,110.12 s 1.83×
LowConn 1,960.08 s 62.80 s 31.11×
HiConn 2,531.00 s 2,446.41 s 1.03×

Fig. 4. Execution time with different
number of triples for the same dataset

5.1 Efficiency

We measure the execution time i) for the whole process, ii) for the different steps
of LODChain, and iii) by using a different number of triples for the same dataset.

Execution Time - The Gain of Prefix Index. Concerning the real datasets
(first five rows of Table 2), as the size of the dataset grows, the execution time
increases. However, by exploiting the prefix index, the execution time highly
decreases for all the real datasets, i.e., we achieved a speedup from 1.41× to
5.44×. Since these datasets contain a high percentage of URIs with new pre-
fixes (that are not part of LODsyndesis) we managed to reduce the reads to
LODsyndesis indexes (and thus the execution time). By using that approach,
we needed for the first four real datasets from 5 s to 2.5 min, whereas for the
largest dataset, i.e. PNLN, we needed 35 min. For the synthetic datasets (last
two rows of Table 2), the execution time is extremely different in case of using
the prefix index, although they contain the same number of triples, URIs and
owl:sameAs mappings. For the LowConn dataset, we achieved a 31.11× speedup
by exploiting the prefix index, while for the whole process 1 min was needed,
although the dataset contains 1 million triples. On the contrary, for the HiConn,
which consists of the same number of triples, we needed 40 min to complete the
process, even by using the prefix index, which is rational, since most URIs of
HiConn contain a prefix that is common in LODsyndesis.

Execution Time for Different Numbers of Triples/URIs. Figure 4, shows
the execution time for different numbers of triples (and URIs), by using the three
largest datasets (including the two synthetic datasets). We can see that as the
number of triples (and URIs) grows, the execution time linearly increases, which
is expected, since the time complexity of the most time consuming tasks (results
are presented in the next paragraph), i.e., computation of closure and merging of
triples with LODsyndesis are linearithmic and linear, respectively (see Sect. 4).

LODChain: Strengthen the Connectivity of Your RDF Dataset 551

Fig. 5. Execution time for the different steps for each dataset (log scale with base 10)

Table 3. Connectivity Analytics for each real dataset to 400 other LOD datasets

ID Measurement GRC GTS WW1LOD MW PNLN

1 # of owl:sameAs – 173 547 10,563 268,861

2 # of inferred owl:sameAs – 548 2,172 26,113 309,134

3 Increase % of owl:sameAs – 316% 397% 247% 114%

4 # of detected errors in owl:sameAs – 0 0 1 20

5 # of unique entities 411 902 10,271 54,089 297,091

6 # of common entities 39 130 825 3,066 75,181

7 common entities percentage 8.6% 12.5% 7.4% 5.3% 20.1%

8 # of connections before LODChain 2 2 5 5 3

9 # of inferred connections 17 9 25 26 33

10 # of connections after LODChain 19 11 30 31 36

11 Increase % of connections 850% 450% 500% 520% 1100%

12 # of unique properties 19 21 65 19 4

13 # of common properties 23 58 81 8 14

14 common properties percentage 54.7% 73.4% 55.4% 29.6% 77.7%

15 # of unique classes 1 20 52 8 0

16 # of common classes 1 8 23 2 1

17 common classes percentage 50.0% 28.5% 30.6% 20.0% 100%

18 # of unique facts 2,897 16,908 53,505 611,750 1,231,972

19 # of common facts 0 25 368 7,935 193,248

20 common facts percentage 0% 0.1% 0.6% 1.2% 13.5%

21 # of new facts for Dnew entities 26,658 17,632 362,339 597,475 3,632,412

22 % of facts enrichment for Dnew entities 920% 104% 672% 96% 254%

23 Dataset with most common entities Wikidata DBpedia Wikidata Wikidata VIAF

24 Dataset with most common facts – Opencyc YAGO Wikidata VIAF

25 Dataset with most complementary facts Wikidata DBpedia GeoNames Freebase VIAF

Execution Time of Different Steps. Figure 5 depicts in log scale (with base
10) the execution time of the different steps of LODChain for each single dataset
and also the average time (of all the datasets) by using the approach with the
prefix index. The most time-consuming task is the computation of closure among
the URIs of a new dataset and LODsyndesis (i.e., global closure), e.g., for PNLN

552 M. Mountantonakis and Y. Tzitzikas

dataset, it requires the 76.4% of the time, whereas the process of merging the
triples can require enough time in case of having a high number of common
entities, e.g., for PNLN it requires 20.2% of the total time. On the contrary, the
rest of steps are quite fast in any case, i.e., less than 50 s even in the worst case.
In general, datasets with high connectivity require more time to be processed,
i.e., for datasets having a lot of common entities with other datasets (such as
PNLN), we need to access more times the indexes of LODsyndesis.

5.2 Connectivity Analytics Over Real Datasets

Table 3 provides connectivity analytics for the 5 real datasets. We can see (IDs
1–3) the high increase (even 397%) in the number of owl:sameAs mappings.
On the contrary, we detected only a very few number of sameAs errors (ID 4),
e.g., only 0.007% for PNLN dataset. Concerning the entities, each dataset shares
several common entities with existing datasets, i.e., from 5.3% to 20.1% of their
total entities (IDs 5–7). Due to the inference, we obtain a high increase in the
number of connections after using LODChain, i.e., from 450% to 1100% (IDs 8–
11). Indeed, the initial versions of the datasets included mappings to few LOD
datasets (from 2 to 5), whereas LODChain discovered many inferred connections
(from 9 to 33). Concerning the schema elements (IDs 12–17), most datasets
use existing ontologies, and have several common properties (even 77.7%). In
some cases we obtained a high number of common facts (IDs 18–20) with other
datasets, i.e., 13.5% for PNLN, which can be used for data verification. Also, we
found a high number of complementary facts (IDs 21–22) for the entities of each
dataset, which can aid data enrichment, e.g., 254% more facts were discovered for
PNLN entities. Also, popular datasets like Wikidata and DBpedia offer several
common entities, common and complementary facts for the input datasets (IDs
23–25). All the datasets, and the results of even more analytics are online in [27].

6 Conclusion and Future Work

Since the current way of publishing an RDF dataset does not favor its connectiv-
ity, and thus its discoverability, reusability and content enrichment, we proposed
a novel service, called LODChain, for strengthening the connections of any RDF
dataset (even before its actual publishing) to the rest of LOD cloud. For show-
casing its potential impact, we described use cases involving different categories
of users, and we detailed its process, which includes methods for computing the
equivalence reasoning among the input dataset and hundreds of LOD datasets.
For evaluating its impact and efficiency we used 5 real and 2 synthetic datasets;
LODChain produced connectivity analytics for datasets with thousands of triples
even in less than 1 min, whereas the connections of real datasets increased from
450% to 1100%. As a future research, work and long-term plan, we want to a)
investigate ways to parallelize LODChain (by extending the techniques of [23]),
b) improve the GUI and perform a usability evaluation with dataset owners, c)
support entity matching for finding connections for totally disconnected RDF
datasets, and d) create an evaluation benchmark for such connection services.

LODChain: Strengthen the Connectivity of Your RDF Dataset 553

Resource Availability Statement: The source code and URL of LODChain, the
datasets and the experimental results are available in [27]. A tutorial video pre-
senting LODChain is available in https://youtu.be/Kh9751p32tM.

Acknowledgments. This work has received funding from the European Union’s Hori-
zon 2020 coordination and support action 4CH (Grant agreement No 101004468).

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets
with the VoID vocabulary (2011)

2. Asprino, L., Beek, W., Ciancarini, P., Harmelen, F.V., Presutti, V.: Observing LOD
using equivalent set graphs: it is mostly flat and sparsely linked. In: International
Semantic Web Conference, pp. 57–74. Springer (2019). https://doi.org/10.1007/
978-3-030-30793-6 4

3. Beek, W., Raad, J., Acar, E., van Harmelen, F.: MetaLink: a travel guide to the
LOD cloud. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 481–496.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2 28

4. Bischof, S., Harth, A., Kämpgen, B., Polleres, A., Schneider, P.: Enriching inte-
grated statistical open city data by combining equational knowledge and missing
value imputation. J. Web Semant. 48, 22–47 (2018)

5. Bizer, C., Heath, T., Berners-Lee, T.: Linked data: the story so far. In: Semantic
Services, Interoperability and Web Applications: Emerging Concepts, pp. 205–227.
IGI global (2011)

6. Brickley, D., Burgess, M., Noy, N.: Google dataset search: building a search engine
for datasets in an open web ecosystem. In: The World Wide Web Conference, pp.
1365–1375 (2019)

7. Chapman, A., et al.: Dataset search: a survey. VLDB J. 29(1), 251–272 (2019).
https://doi.org/10.1007/s00778-019-00564-x

8. Christophides, V., Efthymiou, V., Palpanas, T., Papadakis, G., Stefanidis, K.: An
overview of end-to-end entity resolution for big data. ACM Comput. Surv. (CSUR)
53(6), 1–42 (2020)

9. Cox, S.J.D., Richard, S.M.: A geologic timescale ontology and service. Earth Sci.
Inf. 8(1), 5–19 (2014). https://doi.org/10.1007/s12145-014-0170-6

10. Debattista, J., Attard, J., Brennan, R., O’Sullivan, D.: Is the LOD cloud at risk of
becoming a museum for datasets? Looking ahead towards a fully collaborative and
sustainable LOD cloud. In: Proceedings of WWW Conference, pp. 850–858 (2019)

11. Fernández, J.D., Beek, W., Mart́ınez-Prieto, M.A., Arias, M.: LOD-a-lot. In: Inter-
national Semantic Web Conference, pp. 75–83. Springer (2017). https://doi.org/
10.1007/978-3-319-68204-4 7

12. Gottron, T., Scherp, A., Krayer, B., Peters, A.: LODatio: a schema-based retrieval
system for linked open data at web-scale. In: Extended Semantic Web Conference,
pp. 142–146. Springer (2013). https://doi.org/10.1007/978-3-642-41242-4 13

13. GRNET: Okeanos cloud computing service. https://okeanos.grnet.gr. Accessed 25
July 2022

14. Hubauer, T., Lamparter, S., Haase, P., Herzig, D.M.: Use cases of the indus-
trial knowledge graph at siemens. In: International Semantic Web Conference
(P&D/Industry/BlueSky) (2018)

https://youtu.be/Kh9751p32tM
https://doi.org/10.1007/978-3-030-30793-6_4
https://doi.org/10.1007/978-3-030-30793-6_4
https://doi.org/10.1007/978-3-030-49461-2_28
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.1007/s12145-014-0170-6
https://doi.org/10.1007/978-3-319-68204-4_7
https://doi.org/10.1007/978-3-319-68204-4_7
https://doi.org/10.1007/978-3-642-41242-4_13
https://okeanos.grnet.gr

554 M. Mountantonakis and Y. Tzitzikas

15. Kotis, K., Angelis, S., Chondrogianni, M., Marini, E.: Children’s art museum col-
lections as linked open data. Int. J. Metadata Semant. Ontol. 15(1), 60–70 (2021)

16. Lehmann, J., et al.: Dpedia-a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant. Web 6(2), 167–195 (2015)

17. Weigl, D.M., et al.: Interweaving and enriching digital music collections for schol-
arship, performance, and enjoyment. In: 6th International Conference on Digital
Libraries for Musicology, pp. 84–88 (2019)

18. Mäkelä, E., Törnroos, J., Lindquist, T., Hyvönen, E.: WW1LOD: an application
of CIDOC-CRM to world war 1 linked data. IJDL 18(4), 333–343 (2017)

19. McCrae, J.P., et al.: The linked open data cloud. Lod-cloud. net (2019)
20. Mountantonakis, M.: Services for Connecting and Integrating Big Numbers of

Linked Datasets, vol. 50. IOS Press (2021)
21. Mountantonakis, M., et al.: Extending VoID for expressing connectivity metrics of

a semantic warehouse. In: PROFILES@ ESWC (2014)
22. Mountantonakis, M., Tzitzikas, Y.: On measuring the lattice of commonalities

among several linked datasets. Proc. VLDB 9(12), 1101–1112 (2016)
23. Mountantonakis, M., Tzitzikas, Y.: Scalable methods for measuring the connec-

tivity and quality of large numbers of linked datasets. J. Data Inf. Qual. (JDIQ)
9(3), 1–49 (2018)

24. Mountantonakis, M., Tzitzikas, Y.: Large-scale semantic integration of linked data:
a survey. CSUR 52(5), 1–40 (2019)

25. Mountantonakis, M., Tzitzikas, Y.: Content-based union and complement metrics
for dataset search over RDF knowledge graphs. ACM JDIQ 12(2), 1–31 (2020)

26. Mountantonakis, M., Tzitzikas, Y.: How your cultural dataset is connected to the
rest linked open data. In: Proceedings of the TMM-CH2021, Communications in
Computer and Information Science, Athens, Greece, pp. 12–15 (2021)

27. Mountantonakis, M., Tzitzikas, Y.: LODChain, April 2022. https://doi.org/10.
5281/zenodo.6467419

28. Nayak, A., Božić, B., Longo, L.: Linked data quality assessment: a survey. In:
International Conference on Web Services, pp. 63–76. Springer (2021). https://
doi.org/10.1007/978-3-030-96140-4 5

29. Nečaskỳ, M., Škoda, P., Bernhauer, D., Kĺımek, J., Skopal, T.: Modular frame-
work for similarity-based dataset discovery using external knowledge. Data Tech-
nol. Appl. 56(4), 506–535 (2022)

30. Otero-Cerdeira, L., et al.: Ontology matching: a literature review. Expert Syst.
Appl. 42(2), 949–971 (2015)

31. Paris, P.-H.: Assessing the quality of owl:sameAs links. In: Gangemi, A., et al. (eds.)
ESWC 2018. LNCS, vol. 11155, pp. 304–313. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98192-5 49

32. Pietriga, E., et al.: Browsing linked data catalogs with LODAtlas. In: International
Semantic Web Conference, pp. 137–153. Springer (2018). https://doi.org/10.1007/
978-3-030-00668-6 9

33. Rebele, T., Suchanek, F., Hoffart, J., Biega, J., Kuzey, E., Weikum, G.: YAGO: a
multilingual knowledge base from Wikipedia, Wordnet, and Geonames. In: Groth,
P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 177–185. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46547-0 19

34. Rietveld, L., Beek, W., Schlobach, S.: LOD Lab: experiments at LOD scale. In:
Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 339–355. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25010-6 23

https://doi.org/10.5281/zenodo.6467419
https://doi.org/10.5281/zenodo.6467419
https://doi.org/10.1007/978-3-030-96140-4_5
https://doi.org/10.1007/978-3-030-96140-4_5
https://doi.org/10.1007/978-3-319-98192-5_49
https://doi.org/10.1007/978-3-319-98192-5_49
https://doi.org/10.1007/978-3-030-00668-6_9
https://doi.org/10.1007/978-3-030-00668-6_9
https://doi.org/10.1007/978-3-319-46547-0_19
https://doi.org/10.1007/978-3-319-25010-6_23

LODChain: Strengthen the Connectivity of Your RDF Dataset 555

35. Sabou, M., Onder, I., Brasoveanu, A.M.P., Scharl, A.: Towards cross-domain data
analytics in tourism: a linked data based approach. Inf. Technol. Tour. 16(1), 71–
101 (2016). https://doi.org/10.1007/s40558-015-0049-5

36. Sierman, B., Teszelszky, K.: How can we improve our web collection? An evalua-
tion of webarchiving at the KB national library of the Netherlands (2007–2017).
Alexandria 27(2), 94–107 (2017)

37. Tzitzikas, Y., et al.: Methods and tools for supporting the integration of stocks
and fisheries. In: International Conference on Information and Communication
Technologies in Agriculture, Food & Environment, pp. 20–34. Springer (2017).
https://doi.org/10.1007/978-3-030-12998-9 2

38. Umbrich, J., Hogan, A., Polleres, A., Decker, S.: Link traversal querying for a
diverse web of data. Semant. Web 6(6), 585–624 (2015)

39. Valdestilhas, A., Soru, T., Nentwig, M., Marx, E., Saleem, M., Ngomo, A.-C.N.:
Where is My URI? In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp.
671–681. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 43

40. Valdestilhas, A., Soru, T., Ngomo, A.C.N.: CEDAL: time-efficient detection of
erroneous links in large-scale link repositories. In: Proceedings of the International
Conference on Web Intelligence, pp. 106–113 (2017)

41. Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.: SPAR-
QLES: monitoring public SPARQL endpoints. Semant. Web 8(6), 1049–1065
(2017)

42. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk-a link discovery framework for
the web of data. In: LDOW (2009)

43. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Com-
mun. ACM 57(10), 78–85 (2014)

44. Wang, X., Cheng, G., Pan, J.Z., Kharlamov, E., Qu, Y.: BANDAR: benchmarking
snippet generation algorithms for (RDF) dataset search. IEEE Trans. Knowl. Data
Eng. (2021). https://ieeexplore.ieee.org/document/9477056

45. Wísniewski, D., Potoniec, J., �Lawrynowicz, A., Keet, C.M.: Analysis of ontology
competency questions and their formalizations in SPARQL-OWL. J. Web Semant.
59, 100534 (2019)

46. Yochum, P., Chang, L., Gu, T., Zhu, M.: Linked open data in location-based rec-
ommendation system on tourism domain: a survey. IEEE Access 8, 16409–16439
(2020)

47. Yumusak, S., Dogdu, E., Kodaz, H., Kamilaris, A., Vandenbussche, P.Y.: SpEnD:
linked data SPARQL endpoints discovery using search engines. IEICE Trans. Inf.
Syst. 100(4), 758–767 (2017)

48. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality
assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)

https://doi.org/10.1007/s40558-015-0049-5
https://doi.org/10.1007/978-3-030-12998-9_2
https://doi.org/10.1007/978-3-319-93417-4_43
https://ieeexplore.ieee.org/document/9477056

	LODChain: Strengthen the Connectivity of Your RDF Dataset to the Rest LOD Cloud
	1 Introduction
	2 Related Work
	3 Data Publishing - Typical Approach Versus LODChain
	4 LODChain: Connecting Your Dataset to the LOD Cloud
	4.1 LODsyndesis Aggregated Knowledge Graph
	4.2 The Steps of LODChain

	5 Experimental Evaluation
	5.1 Efficiency
	5.2 Connectivity Analytics Over Real Datasets

	6 Conclusion and Future Work
	References

