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Abstract. This paper presents µKG, an open-source Python library
for representation learning over knowledge graphs. µKG supports joint
representation learning over multi-source knowledge graphs (and also a
single knowledge graph), multiple deep learning libraries (PyTorch and
TensorFlow2), multiple embedding tasks (link prediction, entity align-
ment, entity typing, and multi-source link prediction), and multiple par-
allel computing modes (multi-process and multi-GPU computing). It cur-
rently implements 26 popular knowledge graph embedding models and
supports 16 benchmark datasets. µKG provides advanced implementa-
tions of embedding techniques with simplified pipelines of different tasks.
It also comes with high-quality documentation for ease of use. µKG is
more comprehensive than existing knowledge graph embedding libraries.
It is useful for a thorough comparison and analysis of various embedding
models and tasks. We show that the jointly learned embeddings can
greatly help knowledge-powered downstream tasks, such as multi-hop
knowledge graph question answering. We will stay abreast of the latest
developments in the related fields and incorporate them into µKG.

Resource Type: Software
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1 Introduction

Knowledge graphs (KGs), such as Freebase [4], DBpedia [21], Wikidata [45],
and YAGO [25], store rich structured knowledge about the real world. They
have been widely used in a variety of knowledge-driven applications, including
semantic search, question answering, and logic reasoning [19]. Learning vector
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representations (a.k.a. embeddings) of KGs has become critical to support these
intelligent applications. In the past ten years, various KG embedding models
such as TransE [5], ConvE [12], RotatE [41] and TuckER [3] were proposed and
achieved promising performance. Please refer to the recent surveys [31,46] for an
overview. With these applications becoming more and more popular and diverse,
they put forward higher demands to KGs in terms of coverage, richness and
multilingualism. Oftentimes, a single KG cannot meet all these demands. This
difficulty calls for the integration of multiple KGs. Learning from multi-source
KGs with entity alignment has drawn a lot of attention in recent years [10,36].
The joint KG embeddings have demonstrated useful for a variety of downstream
tasks such as entity typing and multi-source KG completion [11,35].

Table 1. Comparison of existing KG embedding libraries and ours.

Libraries Multi-KG support Deep learning libraries KG tasks
PyTorch TensorFlow LP EA ET Multi-LP

OpenKE [16] a ✗ ✓ TF1 ✓ ✗ ✗ ✗

DGL-KE [57] b ✗ ✓ ✗ ✓ ✗ ✗ ✗

Pykg2vec [53] c ✗ ✓ TF2 ✓ ✗ ✗ ✗

PyKEEN [1,2] d ✗ ✓ ✗ ✓ ✗ ✗ ✗

TorchKGE [6] e ✗ ✓ ✗ ✓ ✗ ✗ ✗

LibKGE [7] f ✗ ✓ ✗ ✓ ✗ ✗ ✗

OpenEA [40] g ✓ ✗ TF1 ✗ ✓ ✗ ✗

EAkit [54] h ✓ ✓ ✗ ✗ ✓ ✗ ✗

NeuralKG [56] i ✗ ✓ ✗ ✓ ✗ ✗ ✗

µKG (Ours) ✓ ✓ TF2 ✓ ✓ ✓ ✓
ahttps://github.com/thunlp/OpenKE.
bhttps://github.com/awslabs/dgl-ke.
chttps://github.com/Sujit-O/pykg2vec.
dhttps://github.com/pykeen/pykeen.
ehttps://github.com/torchkge-team/torchkge.
fhttps://github.com/uma-pi1/kge.
ghttps://github.com/nju-websoft/OpenEA.
hhttps://github.com/THU-KEG/EAkit.
ihttps://github.com/zjukg/NeuralKG.

To support the easy use of KG embeddings and foster reproducible research
into KG embedding techniques, much effort has been dedicated to developing
KG embedding libraries, including OpenKE [16], DGL-KE [57], Pykg2vec [53],
PyKEEN [1,2], TorchKGE [6], LibKGE [7], OpenEA [40], EAkit [54] and Neu-
ralKG [56]. The majority of these libraries concentrates on the typical KG embed-
ding task of link prediction. Only OpenEA and EAkit support multi-source KG
embedding and the corresponding task entity alignment. Besides, most of them
only support one deep learning library, especially PyTorch. No one supports
another prominent deep learning library TensorFlow2 (TF2 for short). This lim-
its the contexts in which these libraries can be used. Facing these limitations of

https://github.com/thunlp/OpenKE
https://github.com/awslabs/dgl-ke
https://github.com/Sujit-O/pykg2vec
https://github.com/pykeen/pykeen
https://github.com/torchkge-team/torchkge
https://github.com/uma-pi1/kge
https://github.com/nju-websoft/OpenEA
https://github.com/THU-KEG/EAkit
https://github.com/zjukg/NeuralKG
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existing work and being aware of the effectiveness of multi-source KG embed-
dings, we develop a new scalable library, namely μKG, for multi-source KG
embeddings and applications. Table 1 compares μKG with the existing popular
KG embedding libraries. In summary, μKG has the following features:

– Comprehensive. μKG is a full-featured Python library for representation
learning over a single KG or multi-source KGs. It is compatible with the
two widely-used deep learning libraries PyTorch and TF2, and can therefore
be easily integrated into downstream applications. It integrates a variety of
KG embedding models and supports four KG tasks including link prediction,
entity alignment, entity typing, and multi-source link prediction.

– Fast and Scalable. μKG provides advanced implementations of KG embed-
ding techniques with the support of multi-process and multi-GPU parallel
computing, making it fast and scalable to large KGs.

– Easy-to-Use. μKG provides simplified pipelines of KG embedding tasks for
easy use. Users can interact with μKG through both methods APIs and com-
mand line. It also has high-quality documentation.

– Open-Source and Continuously Updated. The source code of μKG is
publicly available. Our team will keep up-to-date on new related techniques
and integrate new (multi-source) KG embedding models, tasks, and datasets
into μKG. We will also keep improving existing implementations.

Our experiments on several benchmark datasets demonstrate the effective-
ness and efficiency of our library μKG. Moreover, we carefully design two new
tasks, multi-source link prediction and multi-source knowledge graph question
answering (KGQA), with experiments to demonstrate the potential of multi-
source KG embeddings:

– For Multi-source Link Prediction, we can convert the multiple KGs into
a joint graph by merging their aligned entities, on which we learn joint KG
embeddings for link prediction over each KG. This differs from the traditional
link prediction, which first trains the model on a single KG and then predicts
links for the same KG. In our joint learning setting, to avoid the test set
of a KG’s link prediction task having overlap with other KGs’ training set,
we do not consider relation alignment in multi-source KGs, and also remove
these overlapping triples from the training set if they exist. Our experiment
on DBP15K [36] shows that the joint trained TransE [5] outperforms its
separately trained variant by 122% on Hits@1.

– For multi-source KGQA, as a downstream application of KGs, we have
attempted to use multi-source KG embeddings to aid in the task of multi-hop
question answering over a KG. The typical pipeline of using KG embeddings
to answer natural language questions [32] is learning to align the question
representation (encoded by a pre-trained language model like BERT [13])
with the answer entity’s embedding (encoded by a KG embedding model like
ComplEx [44]). Conventional methods and datasets only consider QA over
a single KG. We introduce an additional KG for joint embedding with the
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Fig. 1. Framework overview of µKG.

target KG using μKG. The embeddings of the target KG from the joint space
are used for QA. Our results on WebQuestionsSP [52] show that joint KG
embeddings can improve the accuracy by 8.6% over independently trained
embeddings on a single KG.

Overall, these experiments show that the multi-source KG embeddings are
able to promote knowledge fusion and transfer, and therefore benefit downstream
tasks. We hope that our μKG library can encourage the use of multi-source KG
embeddings and promote their applications.

2 µKG

μKG is a scalable library for multi-source KG embeddings and applications. It
also supports representation learning over a single KG. Its architecture is shown
in Fig. 1. μKG supports a variety of link prediction, entity alignment, and entity
typing models, as well as the datasets that go with them. It consists of three
modules. The data module converts the input single KG or multi-source KGs
into the training data format (e.g., triples, paths or subgraphs) used by the
embedding model. The computing module supports the execution module with
neural computation and parallel training solutions. As a result, the execution
module can be used for large-scale KGs and is compatible with the widely-used
deep learning libraries PyTorch and TensorFlow. The execution module trains
a KG embedding model with the training data produced by the data module.
The controller keeps track of and records the training process. The evaluator
employs the pre-trained embedding model to perform KG tasks, such as link
prediction, entity alignment, entity typing, and multi-source link prediction.

2.1 Data Module

We hereby introduce the data module of μKG.
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Data Processor. The goal of the data processor is to generate numerical IDs
for entities, relations, and attributes from the input single KG or multi-source
KGs in the Datasets Hub. The numerical ID is the identifier of a resource in an
embedding model. The data processor first reads the original relation triples and
attribute triples from the txt or ttl files. Then, it assigns an ID to each entity,
relation, and attribute. It currently provides two ID generation algorithms. The
unique-ID algorithm generates a unique ID for each resource in KGs. It can
be used for both single KG and multi-source KGs. The shared-ID algorithm
generates the same ID for aligned entities in different KGs. In this way, the
multiple KGs are merged as a “single” joint graph.

Batch Generator. The batch generator takes as input KG triples and divides
the complete data into multiple fixed-size batches for model training. If the
model requires relational paths or subgraphs for training, the batch generator
would first call the path or subgraph sampler to convert triples. The batch gen-
erator also includes several negative sampling methods to randomly generate
negative examples (e.g., negative alignment pairs or negative triples) for each
positive example. The positive and negative examples are used in the embed-
ding model for contrastive embedding learning. The uniform negative sampling
method replaces an entity in a triple or an alignment pair with another randomly-
sampled entity to generate a negative example. It gives each entity the same
replacement probability. Such uniform negative sampling has the problem of
inefficiency since many sampled negative samples are obviously false as training
goes on, which does not provide any meaningful information. μKG also supplies
the self-adversarial negative sampling method [41] and the truncated negative
sampling method [37] that seek to generate hard negative examples.

Path Sampler. The path sampler is to support some embedding models that
are built by modeling the paths of KGs, such as IPTransE [58] and RSN [15]. It
can generate three types of paths based on random walks. The first is the rela-
tional path like (e1, r1, e2, r2, e3), where ei stands for an entity and rj denotes
a relation. It is an entity-relation chain. The second is the entity path like
(e1, e2, e3), and the third is the relation path like (r1, r2).

Subgraph Sampler. The subgraph sampler is to support GNN-based embed-
ding models like GCN-Align [49] and AliNet [39]. It can generate both first-order
(i.e., one-hop) and high-order (i.e., multi-hop) neighborhood subgraphs of enti-
ties. The GNN-based models represent an entity by aggregating the embeddings
of its neighbors in the subgraphs.

2.2 Execution Module

This module carries out the training task of embedding models.
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Trainer. The trainer directs the model training and evaluation based on the
detailed configurations of users. It manages the model’s training progress. μKG
configures trainers for entity alignment models, link prediction models, and entity
typing models, respectively. The trainer provides three optimizers, including the
standard stochastic gradient descent, Adagrad, and Adam. It implements four
loss functions, including the mean-squared loss, marginal ranking loss, limit-
based loss, and noise-contrastive estimation loss.

Evaluator. The evaluator is to assess the performance of the trained model
on specific test data. For (joint) link prediction, it uses the energy function to
compute the plausibility of a candidate triple. For entity alignment or typing, it
provides several metrics to measure entity embedding similarities, such as the
cosine, inner, Euclidean distance, and cross-domain similarity local scaling. The
evaluation process can be accelerated using multi-processing. The implemented
metrics for assessing the performance of embedding tasks include Hits@K, mean
rank (MR) and mean reciprocal rank (MRR). Hits@K measures the percent-
age of the test cases in which the correct counterpart is ranked in the top k.
MR calculates the mean of these ranks. MRR is the average of the reciprocal
ranks of results. Higher Hits@K and MRR or lower MR values indicate better
performance.

Controller. The controller is in charge of the trainer. During the training
process, the controller calls the evaluator to assess the model performance on
validation data. If the performance begins to drop continuously, the controller
would terminate the training (i.e., early stopping). After that, the controller
saves the model and embeddings for further use.

2.3 Computing Module

In this section, we introduce the computing module.

Support of PyTorch and TF2. The computing module uses PyTorch and
TF2 as the backbone for neural computing. Users can choose one of the back-
bones to run μKG or carry on secondary development based on μKG. If no
backbone is specified by the user, μKG can automatically detect which back-
bone has already been installed in the Python environment.

Multi-GPU and Multi-processing Computation. Scalability is a key con-
sideration when we develop μKG, because KGs in real-world applications are
typically very large. Although PyTorch and TensorFlow both provide interfaces
for parallel computing, they differ greatly in implementation and are difficult for
users to use. Hence, we use Ray1 to provide a uniform and easy-to-use interface

1 https://www.ray.io/.

https://www.ray.io/
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Fig. 2. Code snippet for training KG embedding models in the parallel mode.

Fig. 3. Command line for using µKG.

for multi-GPU and multi-processing computation. Fig. 2 shows our Ray-based
implementation for parallel computing and the code snippet to use it. Users can
set the number of CPUs or GPUs used for model training.

2.4 User Interface

μKG gives users two options for running KG embedding models. For users that
are unfamiliar with μKG, they can run a model on a dataset with the command
line, as shown in Fig. 3. For advanced users, they can modify the configurations
of a model and call the model’s running function in their Python code.

3 Experiments

In this section, we report our experiments to evaluate the effectiveness and effi-
ciency of μKG. The source code is available at our GitHub repository.2

3.1 Experiments on Effectiveness

To evaluate the effectiveness, we compare the results produced by our library
with the corresponding official results reported in the models’ papers. We con-
sider one single-KG task link prediction, and three multi-KG tasks entity align-
ment, entity typing and multi-source link prediction.

2 https://github.com/nju-websoft/muKG.

https://github.com/nju-websoft/muKG
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Table 2. LP results on FB15K.

Models Hits@1 Hits@10 MRR

RESCAL Original − 0.284 −
Ours 0.129 0.342 0.202

TransE Original − 0.471 −
Ours 0.194 0.647 0.353

TransH Original − 0.585 −
Ours 0.188 0.604 0.332

TransD Original − 0.742 −
Ours 0.214 0.595 0.345

Table 3. LP results on FB15K-237.

Models Hits@1 Hits@10 MRR

TransE Original − 0.465 0.294
Ours 0.174 0.463 0.270

ConvE Original 0.237 0.501 0.325
Ours 0.237 0.514 0.327

RotatE Original 0.205 0.480 0.297
Ours 0.172 0.456 0.260

TuckER Original 0.266 0.544 0.358
Ours 0.254 0.535 0.346

Link Prediction. We choose two benchmark datasets, FB15K [5] and FB15K-
237 [42], for link prediction evaluation. FB15K-237 was created from FB15K to
ensure that the testing and evaluation datasets do not have inverse relation test
leakage. Recent link prediction models use FB15K-237 for evaluation. On FB15K,
we compare the Hits@1, Hits@10 and MRR results of four old but popular mod-
els in Table 2, including RESCAL [29], TransE [5], TransH [48], and TransD [18].
“−” denotes the unreported results. We can see that our implemented RESCAL,
TransE and TransH can achieve better results than the original code due to our
modern implementations. We also notice that the implemented TransD shows
lower Hits@10 performance than its original version. The reason lies in the differ-
ent evaluation settings. The original TransD removes the corrupted triplets in the
training, validation and test sets before ranking. But our implementation only
removes those in the training set following other methods because this is more
reasonable. On FB15K-237, we compare TransE and other three recent models
including ConvE [12], RotatE [41],3 and TuckER [3] in Table 3. The results of
TransE on FB15K-237 are taken from [41] because TransE was not evaluated on
this dataset. As we can see, our implementations of TransE and ConvE in μKG
perform very similarly to their original code. As for RotatE and TuckER, the per-
formance of our implementations is slightly lower than the original results, but
also in the range of acceptance. This is due to different hyperparameter settings.
In consideration of GPU resources, we do not set the embedding dimension to
1,000, which is used in their original papers but would cost too much GPU mem-
ory. Generally, a large dimension leads to good performance. In summary, our
implementations of link prediction models can basically reproduce the reported
results.

Entity Alignment. We use the recent benchmark dataset OpenEA [40] for
entity alignment evaluation. OpenEA also provides the implementations of sev-
eral entity alignment models using TensorFlow 1.12. We choose three structure-
based entity alignment models GCN-Align [49], SEA [30] and BootEA [37], as

3 We use uniform negative sampling for a fair comparison with other models.
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Table 4. Entity alignment results on EN-DE and EN-FR 15K.

Models Backends EN-DE EN-FR
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

GCN-Align OpenEA 0.481 0.753 0.571 0.338 0.680 0.451
TF2 (ours) 0.480 0.754 0.571 0.335 0.670 0.446
PyTorch (ours) 0.460 0.747 0.560 0.337 0.671 0.453

SEA OpenEA 0.530 0.796 0.617 0.280 0.642 0.328
TF2 (ours) 0.536 0.806 0.624 0.281 0.630 0.304
PyTorch (ours) 0.561 0.834 0.650 0.321 0.679 0.439

BootEA OpenEA 0.675 0.865 0.740 0.507 0.794 0.603
TF2 (ours) 0.671 0.866 0.737 0.503 0.786 0.597
PyTorch (ours) 0.662 0.884 0.738 0.493 0.811 0.599

IMUSE OpenEA 0.580 0.778 0.647 0.569 0.777 0.638
TF2 (ours) 0.567 0.672 0.636 0.571 0.777 0.640
PyTorch (ours) 0.596 0.804 0.670 0.564 0.776 0.640

well as an attribute-enhanced model IMUSE [17], as baselines. We compare their
Hits@1, Hits@10 and MRR results on OpenEA’s EN-DE and EN-FR 15K set-
tings with our PyTorch-based implementations and TF2-based implementations
in Table 4. We can see that the two implementations of a model in μKG achieve
similar performance. For SEA and IMUSE, PyTorch-based implementations per-
form better than TF2-based implementations. We think this is caused by the
difference between the two backbones. When compared to the results of Ope-
nEA, μKG achieves comparable results. This demonstrates the efficacy of our
implementations for entity alignment models.

Entity Typing. Entity typing can be seen as a special link prediction task
across an instance KG and an ontological KG. For example, given (“Michael
Jackson”, “rdf:type”, _), the task is to predict the target type “/music/artist”.
We use the FB15K-ET dataset for evaluation [26]. FB15K-ET is an expansion of
FB15K with entity types. We follow [26] to implement two baselines, RESCAL-
ET and HolE-ET, for entity typing. The two models are built based on the link
prediction models RESCAL [29] and HolE [28], respectively. We compare our
results with those in [26] in Table 5. We can observe that our implementations
achieve similar or even better performance than those in [26], demonstrating the
effectiveness of μKG in entity typing.

Multi-source Link Prediction. This is a new task that we propose, which
is inspired by both link prediction in a single KG and entity alignment between
two KGs. We believe that training embeddings solely on a KG for link predic-
tion is ineffective because the KG may be very incomplete. We introduce another
background KG with entity alignment to the target KG for joint KG embedding
learning. We use the shared-ID generation method in μKG to merge the two
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Table 5. Entity typing results on FB15K-ET.

Models Hits@1 Hits@10 MRR

RESCAL-ET Original 0.097 0.376 0.190
Ours 0.128 0.456 0.236

HolE-ET Original 0.133 0.382 0.220
Ours 0.129 0.522 0.252

KGs and learn embeddings of the joint KG with a KG embedding model such as
TransE [5]. When the learning progress is completed, only the embeddings of the
target KG are used to participate in link prediction. For evaluation, we choose
DBP15KZH−EN [36]. It is an entity alignment dataset, and we denote the two
KGs in DBPZH−EN by DBPZH and DBPEN , respectively. Following TransE [5],
we divide triples into training, validation and test sets. Specifically, DBPZH has
63, 372 training triples, 3, 522 validation triples and 3, 520 test triples, while
DBPEN has 85, 627, 4, 758 and 4, 757, respectively. Conventional link prediction
is usually carried out on a single KG. However, for multi-source link prediction
with entity alignment, it would be interesting to see the performance of link pre-
diction based on the jointly-trained KG embeddings. Based on μKG, we train
a TransE model over the joint graph of DBPZH and DBPEN . We choose three
translational models TransE [5], TransH [48] and TransD [18]; four semantic
matching models DistMult [51], HolE [28], ComplEx [44] and Analogy [23]; as
well as two neural models ProjE [34] and ConvE [12], as baselines. From Table 6,
we can see that μKG (TransE) outperforms the translational and semantic match-
ing models. ConvE achieves better results than our method, but its model com-
plexity is also much higher than TransE. By encoding alignment information,
μKG (TransE) greatly outperforms TransE. The results demonstrate the joint
training is effective to improve the separately-trained models on link prediction.
We think that this is because the alignment information between two KGs can
complement the incomplete relational structures of each other.

3.2 Experiments on Efficiency

In this section, we evaluate the efficiency of the proposed library μKG. The
experiments were conducted on a server with an Intel Xeon Gold 6240 2.6GHz
CPU, 512GB of memory and four NVIDIA Tesla V100 GPUs.

Efficiency of Multi-GPU Training. Figure 4 compares the training time of
RotatE and ConvE on FB15K-237 when using different numbers of GPUs. As we
can see, using multiple GPUs for parallel computing can significantly accelerate
training. The final link prediction results are not affected by parallel computing.
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Table 6. Link prediction results with joint KG embeddings.

Models DBPZH DBPEN

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

TransE 0.100 0.529 0.248 0.099 0.512 0.241
TransH 0.103 0.519 0.274 0.125 0.535 0.263
TransD 0.097 0.506 0.237 0.114 0.517 0.251
DistMult 0.095 0.375 0.188 0.100 0.385 0.195
HolE 0.114 0.327 0.186 0.122 0.405 0.221
ComplEx 0.174 0.374 0.245 0.195 0.435 0.279
Analogy 0.145 0.363 0.220 0.169 0.375 0.241
ProjE 0.257 0.613 0.317 0.265 0.629 0.323
ConvE 0.291 0.597 0.398 0.322 0.631 0.429
μKG (TransE) 0.222 0.549 0.331 0.252 0.585 0.363

For example, the Hits@1 scores of ConvE when using 1, 2, and 4 GPUs for
computing are 0.241, 0.239 and 0.227, respectively. This experiment shows the
efficiency of our multi-GPU training.

Fig. 4. Running time comparison on FB15K-237 with multi-GPU training.

Efficiency Comparison Against LibKGE and PyKEEN. We further com-
pare the training time used by μKG with LibKGE [7] and PyKEEN [1]. They are
both PyTorch-based libraries for efficient training, evaluation, and optimization
of KG embeddings. The backbone of μKG in this experiment is also PyTorch.
Table 7 gives the training time of ConvE and RotatE on FB15K-237 with a single
GPU for calculation. For a fair comparison, we use the same hyper-parameter
settings (e.g., batch size and maximum training epochs) for each model in the
three libraries. We discover that μKG costs less time than LibKGE and PyKEEN
to train a KG embedding model, which demonstrates its efficiency.
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Table 7. Running time on FB15K-237 with a GPU.

Models μKG LibKGE PyKEEN
RotatE 639 s 3,260 s 1,085 s
ConvE 824 s 1,801 s 961 s

4 Application to Multi-hop KGQA

We hereby report the experimental results on the downstream task, i.e., multi-
hop KGQA, using our proposed joint embeddings.

Settings. We follow EmbedKGQA [32], a recent popular embedding-based
KGQA method, to build a QA pipeline with our μKG. EmbedKGQA consists
of three modules. The KG embedding module learns embeddings for the input
KG. Existing KG embedding models such as TransE [5] and ComplEx [44] can
be chosen. The question embedding module encodes natural language questions
with the help of the pre-trained language model RoBERTa [24], which is a new
training recipe that improves on BERT and is widely used for encoding natu-
ral language text. The answer selection module chooses the final answer based
on the question and relation similarity scores. Using KG embeddings to answer
natural language questions can make it more effective in handling the relational
sparsity in KGs. The KG embedding model used in EmbedKGQA is ComplEx.
In our pipeline for QA, we use μKG (the embedding model is also ComplEx)
to learn joint embeddings based on the target KG and another background KG
Wikidata5M [47], which is a subset of Wikidata with million-scale entities. For
a fair comparison, we keep other modules in our pipeline the same as those in
EmbedKGQA.

Dataset. We choose the popular multi-hop QA benchmark WebQuestionsSP
[52] as the dataset. There are 4, 737 questions in total. This dataset contains
1-hop and 2-hop questions that may be answered using Freebase entities [4].
Following EmbedKGQA, we limit the KG to a subset of Freebase that contains
all relational triples within 2-hops of any entity specified in the WebQuestionsSP
questions. We refine it further to include only those relations that are stated in
the dataset. There are a total of 1.8 million entities and 5.7 million triples in
this selected KG (denoted as FB4QA in this paper) to support these questions.
The number of entity links between Wikidata5M and FB4QA is 493, 987.

Results. Table 8 presents the QA accuracy. To study the effect of KG sparsity on
QA performance, following EmbedKGQA, the FB4QA is used for two settings:
Half-FB4QA and Full-FB4QA. The former randomly drops half of the triples
in FB4QA to simulate an incomplete KG. The latter uses the full FB4QA to
learn entity embeddings. Besides, in the Full-FB4QA w/ rel. pruning setting,
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Table 8. QA accuracy on WebQuestionsSP.

EmbedKGQA [32] EmbedKGQA + Wikidata5M

Half-FB4QA 0.485 0.547
Full-FB4QA 0.587 0.646
Full-FB4QA w/rel. pruning 0.666 0.723

a relation pruning strategy is employed to reduce the candidate answer space
by filtering out the dissimilar relations with the key entity in the question. We
can see from the table that EmbedKGQA + Wikidata outperforms the baseline
EmbedKGQA in all three settings. This is because our learned embeddings of
FB4QA can benefit from the background KG, and thus are more expressive
than those in EmbedKGQA. Both our method and EmbedKGQA in the Full-
KG setting achieve better accuracy than the corresponding result in the Half-
KG setting. This demonstrates that KG incompleteness degrades the quality of
KG embeddings, and thus causes a decrease in performance. Our method can
improve the incompleteness issue in KGs through knowledge transfer from other
background KGs. We also consider extending LibKGE [7] for this new task. We
merge two KGs into a large graph and use LibKGE to learn KG embeddings.
The accuracy is 0.718 in the setting of Full-FB4QA w/ rel. pruning, a similar
performance compared with our μKG. This result further shows the effectiveness
of our library and the potential of multi-source KG embeddings. In summary, this
experiment demonstrates that multi-source KG embeddings are also effective in
improving KG-related downstream tasks, and knowledge transfer between multi-
source KGs is an alternative for boosting performance in real-world applications.

5 Related Work

In this section, we review the related work on KG embedding models and tasks,
as well as existing libraries for KG embedding.

5.1 Knowledge Graph Embedding Tasks and Models

Link Prediction. TransE [5] introduces translational KG embeddings. It
defines the score function fTransE(τ) = ||h + r − t||4 to measure the plausi-
bility of relational triple τ = (h, r, t), where h, r and t denote the head entity,
relation and tail entity, respectively. Boldfaced letters denote the corresponding
vector representations. Although TransE performs well for modeling one-to-one
relations, it encounters issues when dealing with more complex relations. For
example, if (h, r, t1) and (h, r, t2) hold for a one-to-many relation r, we have
h+ r ≈ t1 and h+ r ≈ t2, then t1 ≈ t2. If (h, r1, t) and (h, r2, t) hold for h and
t, we have r1 ≈ r2. To resolve these problems, several improved translational

4 Hereafter, || · || denotes the L2 vector norm.
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models, such as TransH [48], TransR [22], and TransD [18], have been proposed.
They enable entities to have relation-specific embeddings. For example, TransH
interprets a relation as a translation vector on a hyperplane, while TransR and
TransD embed entities and relations in distinct vector spaces. RotatE [41] is an
improved variant in the complex vector space. Besides, semantic matching-based
models exploit similarity-based functions to score relational triples. The scores
are computed using bilinear functions in RESCAL [29], DistMult [51], Com-
plEx [44] and SimplE [20], while HolE [28] replaces dot product with circular
correlation. Embeddings are given analogical qualities in Analogy [23]. Recently,
neural network-based models, including ProjE [34], ConvE [12], R-GCN [33],
ConvKB [27], KBGAN [8] and LinkNBed [14], achieve superior link predic-
tion performance. μKG currently supports TransE, TransR, TransH, TransD,
TuckER, DisMult, ComplEx, HolE, Analogy, RESCAL, RotatE, SimplE and
ConvE.

Entity Alignment. Embedding-based entity alignment models usually consist
of two modules, i.e., KG embedding and alignment learning. For KG embedding
based on relational facts, many models including MTransE [10], IPTransE [58],
JAPE [36], KDCoE [9], BootEA [37], SEA [30], AttrE [43], MultiKE [55] and
TransEdge [38] adopt TransE [5] or its improved variants. Most of other mod-
els like GCN-Align [49], RDGCN [50] and AliNet [39] adopt GCN due to its
powerful representation learning ability. Other models like RSN [15] use recur-
rent neural networks for KG embedding, respectively. In addition to relational
facts, some models such as KDCoE, AttrE, MultiKE, RDGCN and IMUSE [17]
also exploit entity attributes for KG embedding and achieve good results. For
alignment learning, IPTransE and KDCoE use the pair loss. Besides, JAPE,
BootEA, AttrE, RSN and MultiKE let aligned entities in seed alignment share
the same or similar embeddings by some tailored data processing skills, which
can be also regarded as a special case of the pair loss. GCN-Align and RDGCN
use the marginal ranking loss and AliNet uses the limit-based loss. To achieve
better performance, some models including IPTransE, BootEA, KDCoE and
TransEdge further employ semi-supervised learning. μKG currently supports
MTransE, AttrE, SEA, GCN-Align, RDGCN, IPTransE, JAPE, BootEA, RSN
and IMUSE.

Entity Typing. Entity typing seeks to predict the “type entities” of an instance
entity. It can be regarded as a special link prediction task across an instance
KG and an ontological KG. μKG currently supports TransE-ET, HolE-ET and
RESCAL-ET. Please refer to [26] for more details.

5.2 Knowledge Graph Embedding Libraries

As summarized in Table 1, most of existing libraries for KG embeddings only
focus on link prediction, a common KG embedding task. Multi-source KG embed-
ding and entity alignment are only supported by OpenEA [40] and EAkit [54].
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Only OpenKE [16], OpenEA and Pykg2vec [53] are developed with TensorFlow,
other libraries only support PyTorch. LibKGE [7] is a recent library for link
prediction with a high degree of modularity. DGL-KGE [57] is developed based
on DGL. It supports PyTorch and XMNet, but not TensorFlow. NeuralKG [56]
is a recent Python-based library for diverse representation learning of KGs, but
it mainly focuses on rule-based link prediction models. By contrast, our library
is more comprehensive than existing work.

6 Conclusion and Future Work

In this paper, we present a new scalable library, μKG, for multi-source KG embed-
dings and applications. It facilitates joint representation learning across multi-
source KGs. It supports PyTorch and TensorFlow2, and can perform multiple
tasks, including link prediction, entity alignment, entity typing, and multi-source
link prediction, with advanced implementations of the corresponding embedding
models. Extensive experiments validate the effectiveness and efficiency of μKG.
We further demonstrate how jointly learned embeddings can greatly aid KG-
powered downstream tasks such as multi-hop KGQA. We show that knowledge
transfer in multi-source KGs is an efficient way to improve the performance of
KG-powered tasks.

Best Practices of KG Embedding Libraries. The proposed μKG supports
multiple tasks, while few libraries support entity typing and multi-source link
prediction. For users who want to carry out these two tasks, μKG is the best
choice. μKG provides many popular methods in both TensorFlow and PyTorch
implementations. If the official code of a model only has one implementation but
users need another, μKG is a good choice. μKG is still in its early stages, and a
few methods do not achieve optimal results. In this case, the original works are
more suitable. For the models that μKG currently does not implement, users
can try other libraries, e.g., LibKGE [7] and PyKEEN [1] for link prediction, or
OpenEA [40] and EAkit [54] for entity alignment.

Future Work. We plan to integrate more KG embedding models and multi-
source KG tasks. We also plan to continually improve our implementations.
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