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Abstract. Automatic knowledge graph (KG) construction is widely used in
industry for data integration and access, and there are several approaches to
enable (semi-)automatic construction of knowledge graphs. One important app-
roach is to map the raw data to a given knowledge graph schema, often a
domain ontology, and construct the entities and properties according to the ontol-
ogy. However, the existing approaches to construct knowledge graphs are not
always efficient enough and the resulting knowledge graphs are not sufficiently
application-oriented and user-friendly. The challenge arises from the trade-off:
the domain ontology should be knowledge-oriented, to reflect the general domain
knowledge rather than data particularities; while a knowledge graph schema
should be data-oriented, to cover all data features. If the former is directly used as
the knowledge graph schema, this can cause issues like blank nodes created due
to classes unmapped to data and deep knowledge graph structures. To this end,
we propose a system for ontology reshaping, which generates knowledge graph
schemata that fully cover the data while also covers domain knowledge well. We
evaluated our approach extensively with a user study and three real manufacturing
datasets from Bosch against four baselines, showing promising results.

Keywords: Semantic data integration · Knowledge graph · Ontology
reshaping · Graph algorithm · Automatic knowledge graph construction

1 Introduction

Knowledge graphs (KG) allow to structure information in terms of nodes and
edges [17]. The nodes represent entities of interests. The edges that connect entities
represent relationships between them. The edges that connect entities to their data val-
ues, represent the data properties of the entities. In the context of Industry 4.0 [26] and
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Internet of Things [20], knowledge graphs have been successfully used in a wide range
of applications and industrial sectors [18,37,38,41,52,59].

Due to the complexity and variety of industrial data (the typical example is rela-
tional tables [54]), it is very desired to facilitate automation of knowledge graph con-
struction [39]. A common approach on knowledge graph construction is to construct
entities and properties by relying on a given knowledge graph schema, often a domain
ontology (Fig. 1a). This approach matches the attributes names in raw data to enti-
ties and properties in knowledge graph, then organise them in the same pattern as the
schema [9,22,28]. However, the existing approaches to construct knowledge graphs
are not always efficient enough and the resulting knowledge graphs are not sufficiently
application-oriented and user-friendly. The challenge arises from the trade-off between
the knowledge-orientation and data-orientation: A classical domain ontology is a formal
specification of shared conceptualisation of knowledge [14,40]. It should be knowledge-
oriented, to reflect the experts knowledge on upper level concepts, specific domains, or
applications, rather than data particularities of arbitrary datasets [27]; while a knowl-
edge graph schema should be data-oriented, to cover all the features (columns in tables)
and have limited number of blank nodes. If a knowledge-oriented domain ontology is
directly used as the knowledge graph schema, this can cause a series of issues, e.g., the
data integrated with the help of domain ontologies suffers from a high load of blank
nodes in knowledge graphs that result from data integration, e.g., up to 90% of infor-
mation in the knowledge graph are blank nodes [16].

Indeed, sparse knowledge graphs are hard to digest for end-users: browsing them
is a bad experience, users will have to go through hordes of blank nodes. Then, blank
nodes affect application development. The applications should adapt to the structure
of the knowledge graph, e.g., by reflecting this structure in SPARQL queries, thus the
queries will have to handle and skip many bank nodes. Then, the bigger a knowledge
graph gets the mode difficult is to process or search in it. Thus, it is desired to reduce
the number of spurious blank nodes and to make knowledge graphs more compact.

Considering an example in Fig. 1c-d, where classes and data properties in the
domain ontology (Gdo) are mapped to tables and attributes in the relational schema
(R). There exist many discrepancies between Gdo and R. If Gdo is directly used as the
schema to construct knowledge graphs, a number of issues will arise: many classes in
Gdo that are not mapped to any tables or attributes in R will lead to blank nodes (or
dummy nodes); the attribute DP2 will be connected to a dummy class C6, instead of
C1, which it should be connected to, etc.

Past works like ontology modularisation, summarisation did not address the chal-
lenge, because they still use the domain ontology to construct knowledge graph. Our
previous work [60] could convert the domain ontology to data-oriented ontologies as
knowledge graph schemata, but did not provide interoperability between these knowl-
edge graphs and also did not fully exploit the knowledge in the domain ontology. A
better solution is to have data-oriented knowledge graph schemata while still preserve
knowledge in the domain ontology.
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Fig. 1. (a) Ontology-based knowledge graph construction without ontology reshaping generates
sparse knowledge graphs with many dummy nodes, which are generated based on classes in
the knowledge graph schema that do not have correspondence in the raw data; (b) knowledge
graph-construction with ontology reshaping that converts the general domain ontology to data-
specific knowledge graph schemata, which makes the knowledge graph more user-friendly. (c)
Domain ontology reflects the domain knowledge; (d) The knowledge graph schema needs to
reflect raw relational data schema specificities and usability. orange and red circles: classes that
can be mapped to attributes in the relational data schema; blue circles: classes that cannot be
found in the relational data schema. (Color figure online)

To this end, we propose our knowledge graph construction system that relies on the
OntoReshape+ algorithm to “reshape” a given domain ontology to data-oriented knowl-
edge graph schemata (Fig. 1b), better incorporates knowledge in the domain ontol-
ogy, and provide interoperability between the knowledge graphs based on the reshaped
knowledge graph schemata. Our contributions are as follows:

– We introduce a use case of knowledge graph generation for welding quality moni-
toring which shows the challenge of sparse knowledge graphs constructed from raw
data based on the domain ontology as the schema.

– We derive the four requirements: data coverage, knowledge coverage, user-
friendliness and efficiency, from the use case perspective, and mathematically
abstract them.

– We propose an algorithm, OntoReshape+, which can fully satisfy data coverage
while better incorporates knowledge from the domain ontology, compared to the
baselines.

– We implemented the algorithms in system of knowledge graph construction
enhanced by ontology reshaping, which can automatically reshape the domain ontol-
ogy to data-oriented ontologies that serve as knowledge graph schemata, and con-
struct the knowledge graph without dummy nodes.

– We evaluated our approach extensively with a user study and three real manufactur-
ing dataset from Bosch against four benchmarks, showing promising results.

This paper is organised as follows. Section 2 introduces Bosch manufacturing weld-
ing use case. Section 3 introduces some preliminary knowledge. Section 4 presents our
method. Section 5 evaluates the method. Section 6 discusses related work. Section 7
concludes the paper.



Ontology Reshaping for KG Construction: Applied on BoschWelding Case 773

Fig. 2. Schematic illustration of the (a) domain ontology (partial) and (b) an excerpt of knowledge
graph constructed by directly using the domain ontology as the knowledge graph schema, which
has many dummy nodes due to classes in (a) that are unmapped to the data.

2 The Bosch Welding Use Case

Resistance Spot Welding and Quality Monitoring. Resistance spot welding is a type
of automated welding process that accounts for millions of car production globally.
During the welding, the electrode presses the worksheets (car bodies) and passes a high
current through the electrodes and the worksheets [53,55]. The material in the small
area between the electrodes will melt due to the heat generated by electricity and then
congeal after cooling down, forming a welding spot that connects the worksheets by
controlling robot arm positioning [3,34]. Multiple quality indicators, e.g. the spot diam-
eter, are monitored to ensure the welding quality. The quality monitoring of resistance
spot welding is essential and involves large amounts of data collected from welding
process.

Bosch Welding Data with High Variety. Bosch welding data come from multiple
sources [44,57], e.g. welding production plants, welding laboratories, analytical or
numerical simulation models in Bosch’s research centres. Just taking the production
data as example, whose sources are hundreds of Bosch plants worldwide and many
Bosch’s renowned customers [47]. These data are highly diversified because they are
collected with various sensors settings, formats, databases, software versions, etc. that
are tailored to individual customer needs and factory specifications [51,58,61].

Data Integration, Domain Ontology and Knowledge Graph. Due to the many dis-
crepancies of data semantics and formats, data integration is essential for building user-
friendly, sustainable and efficient industrial solutions [45,56]. Bosch adopts semantic
data integration that relies on domain ontologies to transform various data into uniform
data formats, one typical example of which is knowledge graph for it provides an effi-
cient foundation for many applications. The welding domain ontology is usually gen-
erated by semantic experts or domain experts, and should reflect the general resistance
welding knowledge across different scenarios of production, laboratory and simulation
(Fig. 2). It is modelled in OWL 2 language and has a large number of axioms. One of
such example has 1181 axioms that describe 210 classes, 203 object properties, and 191
datatype properties. In contrast, the various welding datasets may have a much smaller
scope. For example, one production dataset only contains data generated by the welding
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control of a particular welding setting or a specific software version, and miss large data
that are measured in other settings, software versions, or in laboratory or simulation. On
the other hand, laboratory and simulation data enjoy the flexibility of sensor installation
that would be otherwise extremely costly to realise in the real production. Traditional
approaches that use a common domain ontology as the knowledge graph schema for
integrating various data will cause a series of issues, discussed in next section.

Fig. 3. (a) An example query to retrieve the current sensor measurement array, over knowledge
graph constructed based on the domain ontology. (b) The query that retrieves the same results
over knowledge graph constructed based on the reshaped ontology, which is much user-friendly
than that in (a).

Cumbersome KGs and Long Queries due to KG Schema. The knowledge graphs
integrated from various data sources with the same domain ontology as the knowl-
edge graph schema enjoys the data interoperability, namely uniform data access across
all datasets. However, it also has serious drawbacks. Considering the example knowl-
edge graph (Fig. 5b) generated with the schema in Fig. 5a, where the black blocks with
white background are dummy nodes, generated because classes in the domain ontol-
ogy is not mapped to anything in the data. The number of such dummy nodes are
very high, up to 63.6%. The dummy nodes cause the knowledge graph to be unnec-
essarily cumbersome, consuming much computational power in generation and stor-
age resource in the database. In addition, they also lead to superfluously long queries
(Fig. 3a) that need to traverse many dummy nodes during data accessing, which is nei-
ther technologically-friendly nor user-friendly. Moreover, our users also complain that
some knowledge graphs based on domain ontologies have disconnected sub-graphs that
cannot be reached with queries starting from the welding operation, which is the most
important node in the knowledge graphs that they usually start in the queries. They
prefer connected knowledge graphs schemata.

Requirements for the Ontology Reshaping System. Both from the system and user
view, it is highly desired to simplify the knowledge graph schemata to avoid the dummy
nodes while still cover all the data and reflect the domain knowledge, so that the knowl-
edge graphs become much more efficient and queries become simpler (Fig. 3b). We
thus derive the following requirements for the new knowledge graph schemata and for
the algorithm and system that generates the knowledge graph schemata and facilitates
knowledge graph construction:

– R1 Data Coverage. The knowledge graph schemata generated by system should still
cover all the data, e.g. including table names and attribute names for relational tables.
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– R2 Knowledge Coverage. The knowledge graph schemata should still possibly pre-
serve the knowledge encoded in the domain ontology. It should be similar to the
domain ontology, either judged by the users or with some metrics.

– R3 User-friendliness. The user-friendliness involves at least 3 aspects: R3.1, the
knowledge graphs constructed based on the new knowledge graph schemata should
possible have very few dummy nodes, ideally zero (we call this the succinctness of
the knowledge graph schemata or the knowledge graph); R3.2, the knowledge graphs
schemata should be connected, namely no disconnected sub-graphs, so that the users
can reach all nodes relevant to when they write queries (connectivity); R3.3, users
prefer simpler and shorter queries than long queries when they can retrieve the same
information. Thus, the constructed knowledge graphs should possibly have shal-
lower structure (simplicity). Apart from that, the system for generating knowledge
graph schemata and constructing knowledge graphs should also be user-friendly.
This is commonly known as system usability [19] in terms of human machine inter-
action. It is evaluated by effectiveness, user efficiency (note this is the efficiency of
users using the system, different from the R4 system efficiency), and user satisfac-
tion of the system.

– R4 System Efficiency. The system efficiency measures two aspects: time efficiency,
namely the overall time for generating the knowledge graph schemata and construct-
ing the knowledge graphs, and the space efficiency, the storage space needed for the
knowledge graphs to store the same information.

3 Preliminaries

Concepts and Problem Formulation.We formulate the problem of Ontology Reshap-
ing as problem of computing from a given ontology and some context, a new ontology
that fully satisfies the requirement R1 (Sect. 2) and achieves possibly good performance
in terms of R2-R4. In particular, in this work we focus on specific type of contexts that
can be formulated as follows:

Ontology Reshaping : (Gdo, R,Mdo, U) → Gro,Mro (1)

where Gdo is a given domain ontology, R is a relational schema of relational tables,
Mdo is a mapping between R and Gdo, U is optional user information, and Gro is the
“reshaped” ontology, Mro is a mapping between Gro and R– defined as follows:

An Ontology in the context of our work is a directed labelled multigraph G(N , E), e.g.,
projected1 from a set of OWL 2 axioms (e.g., the domain ontology Gdo and reshaped
ontology Gro) as follows: The classes are projected to class nodes NC , the datatypes to
datatype nodes ND, the object properties to object property edges EO, and the datatype
properties to datatype property edges ED.

A Relational Schema (R) is a finite set relational tables R = {T1(A), ...,Tn(A)}, where
Ti is a table name while A is a finite set of attributes A = {a1, ..., ak} represented by

1 Ontology projections typically do not preserve all information captured by ontologies, but they
are sufficient for our purpose of ontology reshaping.
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their attribute names aj . Among the attributes, there exist attributes called the primary
key Ap (each table only one) that uniquely identifies the rows, (optionally) foreign key
attributes Af refer to the primary keys of other tables, and normal attributes An that
contain normal data.

A Mapping (M ) is a bidirectional function that maps the elements in R to elements
in G. The Raw-to-DO Mapping (raw data to domain ontology mapping) Mdo maps
the table names T in R to class nodes NC in Gdo, normal attributes An to datatype
property edges ED, and foreign keys Af to object property edges EO, and vice versa.
Similarly, the generated Raw-to-RO Mapping (raw data to reshaped ontology mapping)
Mro maps the T, An, Af to NC , ED, EO in Gro. In this work, we assume the mapping
Mdo is one-to-one mapping that maps all elements in R to elements in Gdo.2 Similarly,
the generated Mro is also one-to-one mapping.

M : {T ↔ NC ,An ↔ ED,Af ↔ EO | T,An,Af ∈ R, NC , ED, EO ∈ G}.
The User Information (U ) can be understood as (1) a mandatory label that labels a node
in Gdo as the most important node for the users, named as the main node, nm; (2) an
extra set of mappings that map some normal attributes An in R to class nodes NC in
Gdo: U : {An ↔ NC | An ∈ R,NC ∈ Gdo}.
The Dummy Nodes N dummy are the nodes in the knowledge graph schema G (and the
knowledge graph constructed based on G) that cannot be mapped to any elements in R.

Mathematical Abstraction of Requirements. Following the requirements for the sys-
tem in Sect. 2, we derive their mathematical abstraction. The R1-R3 are designed in a
way that they range from 0 to 1. The closer to 1 they are, the better performance the
ontology reshaping algorithm has

– R1 Data Coverage, this is measured by the number of elements inRmapped to Gro:
– R2 Knowledge Coverage, Gro should preserve possible many nodes and edges in

Gdo, measured by the number of elements in Gdo kept in Gro. We use the formula to
transform this metric to a range between(0,1]: ( |{n}| + |{e}| ) / ( |N do| + |Edo| ),
where ∃ ndo ∈ N do, n ↔ ndo, ∃ edo ∈ Edo, e ↔ edo, n,e∈ Gro.

– R3 User-friendliness, calculated in 3 aspects:
• R3.1 Succinctness, measured by the percentage of non-dummy nodes divided
by the total number of nodes: |N dummy|/|N ro|,N dummy ⊂ N ro.

• R3.2 Connectivity, determined by the number of required extra edges e needed
to connect Gdo. We use the formula to transform this metric to a range between
(0,1]: 1/(1 + #e).

• R3.3 Simplicity, determined by the graph diameter d of Gro. We use the formula
to transform this metric to a range between (0,1]: 1/d.

– R4 Efficiency. The time efficiency is measured by the total time of ontology reshap-
ing and knowledge graph construction based on knowledge graph schema. The space
efficiency is measured by the storage space needed for the constructed knowledge
graph.

2 Note it is not the same case for the other way around: there normally exist many nodes or
edges in Gdo that cannot be mapped to any elements in R.
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Fig. 4. An architectural overview of our KG solution. KG: knowledge graph. KGS: KG schema.

4 Our Approach

4.1 Architectural Overview

We now walk through the readers through our ontology reshaping system (Fig. 4) The
system consists of four layers: (Non-KG) Data Layer, Semantic Layer, KG Data Layer,
and Application Layer. From the very left, the (Non-KG) Data Layer contains theWeld-
ing Raw Data. The Welding Raw Data are in the form of relational tables and also
have their corresponding Relational Schemata. The Semantic Layer contains several
semantic artefacts and semantic modules. TheOntoReshape+ module takes theDomain
Ontology Gdo, the Raw-to-DO Mapping Mdo (raw data to domain ontology), and the
Relational Schemata R (in addition, the user information U ) as inputs, and generates
a series of Reshaped Ontology Gro (KG Schemata at the same time) and their corre-
sponding Raw-to-RO Mappings Mro. These KG Schemata and Raw-to-RO Mappings
are then used by the KG Construction module to construct the Welding KGs from the
Welding Raw Data. And common Queries are selected by the users for welding quality
monitoring. The Welding KGs in the KG Data Layer then can be used for applications
like Query-Based Analytics and ML Analytics [59] in Application Layer.

4.2 Semantic Artefacts

Ontologies. The three different type of ontologies are domain ontology, relational
schema graph and KG schema.

Domain Ontology Gdo. The domain ontology models the general knowledge of resis-
tance welding spot manufacturing process (Fig. 2) and should cover all attributes in the
common Bosch datasets in our consideration. The domain ontology has the RSWOper-
ation as the most important class, where the RSWOperation is a welding operation that
produces an atomic product. The RSWOperation takes sheet components with speci-
fied combination in, choose the specific welding machine and outputs the welding sheet
combination with welding spots.
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Reshaped Ontology Gro. The reshaped ontology is similar to domain ontologies. Our
reshaped ontology are reshaped from the Domain Ontology Gdo by Algorithm 1. An
example is given by Fig. 5d. The reshaped ontologies are the simplified knowledge
graph schemata, and keep the necessary parts to cover the specified datasets, which
are then used as the schema of Welding knowledge graph.

Mapping. The system has two types of mappings: Raw-to-DOMappingMdo (raw data
to domain ontology) and the Raw-to-ROMappingMro (raw data to reshaped ontology).

Raw-to-DO Mapping Mdo is generated manually by users (welding experts). It should
map all tables and attributes in the data to the nodes or edges in the domain ontology.
Thus, each dataset has its own Mdo.

Raw-to-RO Mapping Mro is automatically generated by the ontology reshaping algo-
rithm, accompanying the reshaped ontology Gro. It is needed for every Gro since every
Gro will be used for data integration. Mro reuses most of the Mdo and should map all
tables and attributes in the raw data to the nodes and edges in Gro.

Fig. 5. (a) Schematic illustration of a small excerpt of the domain ontology Gdo. (b) Intermediate
results in OntoReshape+: Tree 1 T1 and (c) Tree 2 T2. (d) Reshaped ontology Gro. (e) knowledge
graph constructed based on (d).

Queries. The queries in our system are SPARQL queries with the backbone as Basic
Graph Pattern (BGP) query.

4.3 The Algorithm OntoReshape+

Intuition. The intuition behind our algorithm OntoReshape+ is to select subsets of
nodes and edges from a given domain ontology Gdo, which can be mapped to a rela-
tional schema R or included in the user information U , and then connect the selected
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Algorithm 1: Schema Reshaping

Input: Gdo, R,Mro, U
Output: Gro

1 T1, Edeleted
1 ← Graph2Tree(Gdo, U )

2 T2, Edeleted
2 , Mro ← TreeCollapse(T1, R, Mdo, U )

3 Gro ← T2 ∪ {e(nt, nh) | e(nt, nh) ∈ Edeleted
1 ∪ Edeleted

2 , nt ∈ T2, nh ∈ T2}

subsets with possibly more edges in Gdo, thus generating the reshaped ontology Gro.
More specifically, OntoReshape+ does so in three steps:

– Step 1, it transforms Gdo (Fig. 5.a) to a tree T1 (Fig. 5 b) by removing some edges,
where the tree has the main node nm given in U as the root;

– Step 2, it selects the subsets of nodes and edges of T1 that are mapped in R by Mdo

or pointed by the users, creating a T2 (Fig. 5 c);
– Step 3, some deleted edges in Step1 and Step 2 are added back to T2, where these

edges have both their head and tail in T2, resulting Gro (Fig. 5 d).

Step 1. Graph2Tree. With nm as the root node, Step 1 (Algorithm 2) expands the tree
T1 with nodes and edges selected from Gdo layer by layer, in a way that there exists
only one path between any node and nm. We first clarify several concepts used in the
step: N leaf refer to the set of leaf nodes of T1, N ring refers to the set of “ring nodes”
(nodes in a outer layer of the leaf nodes) that are potential to be added to T1, N visited

is the set of visited nodes, and Edeleted
1 is a set of the deleted edges. Then we introduce

the procedure. First, Algorithm 2 reads the user information to mark the main node nm,
and initialise T1, N leaf , N visited with nm, and the set Edeleted

1 with the empty set (Line
1). Next, if N leaf is not empty, Algorithm 2 does the following steps: it initialises an
empty set N ring (Line3), then it enumerates each node ni in the current N leaf (Line 4)
and create an empty set of ring nodes N ring

i that belong to ni. For each leaf node ni, it
enumerates the edges incidental to the node ni in Gdo, eu(ni, nj)3, but not in Edeleted

1 ,
and exams the other node nj that this edge is connected to. If nj is not visited (not
in N visited), then the node nj and the edge eu(ni, nj) are added to T1 (Line 8), nj is
added to N visited and a new ring set N ring

i that belongs to ni (Line 9–10), and . If nj is
already visited, the edge eu(ni, nj) is added to Edeleted

1 (Line 12). After all eu(ni, nj)
are enumerated, all elements in N ring

i are added to N ring (Line 13). After all ni are
numerated, the N ring becomes the new N leaf (Line 14).

Step 3. Tree collapse. Step 3 (in Algorithm 3) selects nodes in Grs, by user or rule,
and save them in N selected, then deletes the nodes not in N selected from T2 which
is copied by T1, at the same time keeps the connectivity of T2. It takes 4 inputs: the
tree T1, the relational schema R, raw data to domain ontology mapping Mdo, and user
information U . The algorithm firstly inisialised the ring node set N ring with main node
nm, T2 with T1, and deleted edge set Edeleted

2 forT2 with empty set (Line 1). Then the
algorithm selects the nodes in relational schema graph Grs, or with datatype property

3 Here we use eu(ni, nj) to represent both the edge e(ni, nj) and e(ni, nj).
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Algorithm 2: Graph2Tree

Input: Gdo, U
Output: T1, Edeleted

1

1 Initialisation: nm ←ReadUserInfo(U ); T1,N leaf ,N visited ← {nm}; Edeleted
1 ← {}

2 while N leaf �= ∅ do
3 N ring ← {}
4 foreach ni ∈ N leaf do
5 N ring

i ← {}
6 foreach eu(ni, nj) ∈ Gdo \ Edeleted

1 , nj ∈ Gdo do
7 if nj �∈ N visited then
8 T1 := T1 ∪ {nj , e

u(ni, nj)}
9 N visited := N visited ∪ {nj}

10 N ring
i := N ring

i ∪ {nj}
11 else
12 Edeleted

1 := Edeleted
1 ∪ {eu(ni, nj)}

13 N ring := N ring ∪ N ring
i

14 N leaf ← N ring

having”ID” or “Name”, or by user choices. These nodes are added into N selected (Line
2). IfN ring is not empty, the Algorithm 3 does the following steps: it inisialise an empty
set N ring

next , then it enumerate each node ni in the current N leaf (Line 4). For each leaf
node ni, it enumerates the edges incidental to the node ni in T1, eu(ni, nj). If nj is
not selected (not in N selected), then the node nj and edge eu(ni, nj) are deleted from
T2 and eu(ni, nj) is added to Edeleted

2 . If the edge eu(nj , nk) is in T1,then eu(nj , nk)
is deleted from T2, and a new edge eu(ni, nj) with same label of eu(nj , nk) is added
to T2. The eu(nj , nk) is added to N selected and the ni is added to N ring

next . If nj is in
N selected, nj is added to N ring

next . After all ni are enumerated, The N ring is added to
Nvisited, the N ring

next becomes the new N ring . After N ring is empty, items in Mdo, of
which exist in T2, are added inMro.

Step 4. Add edges back. The algorithm adds the edge back into T2, which is in Edeleted
1

or Edeleted
2 , and the endpoints are both in T2. The final tree is the reshaped ontology Gro.

4.4 Knowledge Graph Construction

The KG Construction module takes the reshaped ontology Gro, the Raw-to-RO Map-
ping Mro and the Welding Raw Data as inputs, and generates a series corresponding
Welding KG. We enumerate all class nodes in Gro. For each node and its datatype prop-
erty edges, we find the primary keys for node and attributes for the edge respectively
in the mapped tables and attributes in Welding Raw Data via Mro, and create an entity
for each key, and create datatype properties for each such edge. Next, we enumerate all
object property edges in Gro, find the mapped foreign keys in theWelding Raw Data via
Mro, and create links (object properties) between the entity represented by the primary
key and the entity represented by the foreign key. An small excerpt is shown in Fig. 5e,
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which shows the knowledge graphs constructed based on Gro as the schema has zero
dummy nodes.

5 Evaluation

This section includes a preliminary user study and a system evaluation that evaluate our
system from the user view and system view, respectively.

5.1 Preliminary User Study

Participants. We deployed our system with tasks and questionnaires on a Bosch envi-
ronment and received a number of results. The participants (Table 1) include Bosch
welding experts, engineers, welding, and production, and additionally software engi-
neers and data scientists. They need to input their age, occupation, education and skills
for semantic web, query, and welding, ranging from 0 (no knowledge), to 5 (experts).

Algorithm 3: TreeCollapse

Input: T1, R, Mdo, U
Output: T2, Edeleted

2 , Mro

1 Initialisation: N ring ← {nm}, T2 ← T1, Edeleted
2 ← {}

2 N selected ← GetNodes(R, Mdo) ∪ ReadUserInfo(U) ∪ IdentifyID(Grs)

3 while N ring �= ∅ do
4 N ring

next ← {}
5 foreach ni ∈ N ring do
6 foreach eu(ni, nj) ∈ T1 do
7 if nj �∈ N selected then
8 T2 := T2 \ {nj , e

u(ni, nj)}
9 Edeleted

2 := Edeleted
2 ∪ {eu(ni, nj)}

10 if eu(nj , nk) ∈ T1 then
11 T2 := T2 \ {eu(nj , nk)}
12 T2 := T2 ∪ {eu(ni, nk)}, where eu(ni, nk) adopts the label of

eu(nj , nk)
13 Edeleted := Edeleted ∪ {eu(nj , nk)}
14 N ring

next := N ring
next ∪ {ni}

15 else
16 N ring

next := N ring
next ∪ {nj}

17 N ring ← N ring
next

18 Mro ← MappingGeneration(T2,Mdo)

Tasks. We selected 7 tasks (Table 2) that should reach a balance between testing the
system and maintaining a controllable scope. The tasks include two types: Type 1, to
input user information for ontology reshaping and Type 2, to select one query from
four options (only one option is correct) to perform data inspection or diagnostics in
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Table 1. User profiles in the user study

# Age Occupation Education Sem. Web Query Welding skills

P1 28 R&D Engineer MSc 2 2 3

P2 29 R&D Engineer MSc 2 1 3

P3 29 Welding Engineer MSc 1 0 3

P4 41 Senior Welding Expert MSc 0 0 5

P5 45 Welding Engineer MSc 0 0 4

P6 25 Welding Engineer BSc 0 0 4

P7 42 Software Engineer BSc 3 2 2

P8 39 Production Engineer BSc 0 0 3

P9 23 Data Scientist MSc 2 2 2

P10 44 Data Scientist PhD 2 1 2

Table 2. Tasks and type in the user study

# Tasks Type

T1 Select “RSWOperation” as the main node Type 1

T2 Mark “SheetComponent1” as a table node Type 1

T3 Create a new table node “SheetCombination” Type 1

T4 Inspect operation curves on KGro Type 2

T5 Inspect operation curves on KGdo Type 2

T6 Detect abnormal welding operations KGro Type 2

T7 Detect abnormal welding operations KGdo Type 2
Fig. 6. Time/correctness for tasks

the knowledge graph (KGro) with the reshaped knowledge graph schema and in the
knowledge graph (KGdo) with the domain ontology as the schema. Type 1 measure the
usability of using our ontology reshaping system, and Type 2 compares users’ percep-
tion of querying knowledge graphs with and without the ontology reshaping. Specifi-
cally, Type 1 has three tasks: T1, select the main node; T2, mark an attribute to table
node in R; T3, create a new table node in R. Type 2 has four tasks: T4, select a query
to inspect operation curves in KGro; T5, do the same on T4 in the KGdo; T6, select a
query to detect abnormal welding operations (exceeding tolerance limit) in the KGro;
T7, do the same on T6 in the KGdo.

Workflow of the User Study. For the user study, we first give the participants a short
introduction with background knowledge, including basics of semantic technology like
ontology, knowledge graph construction, and SPARQL query. Then, we explain them
some relevant concepts of welding and the welding data (some users are not welding
experts), present them visualisation of resistance welding domain ontology (Fig. 5).
Then, we introduce them our tasks and how to use our GUI system. This introduction
text is shown later constantly during the tasks. After that, the participants use the GUI
system to perform the tasks. We record the time they use for each task, and the results
of their actions stored in json. At the end, they answer a questionnaire (Table 3) with 12
questions that represent dimensions of their satisfaction about the system.
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Results and Discussion. The results reflect the system usability (R3) [19] in efficiency
(time used for tasks), effectiveness (correctness of user actions), and satisfaction. The
recorded time (Fig. 6) show that the users need very limited time (average 28.0s) to
perform the tasks, and thus the system is efficient. We compared the user results with
a list of recommended results (we designed the tasks in a way so that the comparison
is possible) and calculate the correctness. The results show (Fig. 6) that the correctness
is always very high (average 82.1%) for the ontology reshaping tasks (Type 1) and for
the query on theKGro (Type 2). The results also show that the correctness of selecting
queries on KGro is higher than that on KGdo (T4>T5, T6>T7), which demonstrates
the benefit of our ontology reshaping system.

The questionnaires (Table 3) subjectively evaluate the users’ satisfaction about our
system in four requirements (Sect. 2). From the aggregated scores, it can be seen that
the users unanimously agree that our ontology reshaping system has good data coverage
(R1); The knowledge coverage (R2) is scored 3.8, relatively good but has improvement
room; The user-friendliness (R3) that covers connectivity, succinctness, simplicity and
usability is also evaluated relatively high; The users are also quite satisfied with the
system efficiency in terms of saving time and space (R4).

5.2 System Evaluation with Bosch Welding Dataset

We evaluated our system with OntoReshape+ on 3 industrial datasets. In addition to
baseline of using Gdo as knowledge graph schema, we also compare with other 3 base-
lines.

Data Description. We now describe the datasets, including 3 industrial datasets D for
knowledge graph construction and four inputs for ontology reshaping: 1 domain ontol-
ogy Gdo, 3 relational schema R, 3 data to domain mappings M , and user information
U .

Table 3. Questionnaires and scores for subjective evaluation. The scores range from 1 (disagree),
2 (fairly disagree), 3 (neutral), 4 (fairly agree), to 5 (agree). The column Score is aggregated by
reversing the scores of negative questions (Q2, 4, 6, 8, 10, 12) and then computing the average
(avg.) and standard deviation (std.) (avg.±std.)

# Questions Dimension Score

Q1 I’m in general satisfied that KGro cover the data that I need. Data coverage 4.31 ± 0.87

Q2 I found KGro miss some welding parameters that I need.

Q3 I felt the knowledge represented by KGro is reasonable. Knowledge coverage 4.63 ± 0.32

Q4 I thought KGro differs much from my understanding of welding.

Q5 I like that inKGro all data can be reached from the main node. User-friendliness 4.23 ± 0.71

Q6 I do not think that the queries over KGro become simpler.

Q7 I found that it is great that KGro contains no dummy nodes.

Q8 I hardly found KGro became simpler compared to KGdo.

Q9 I found very confident using the system

Q10 I needed to learn many things before I could use the system.

Q11 I like that KGro saves storage space. System efficiency 4.46 ± 0.33

Q12 I find it unnecessary the small amount of time saved by KGro.
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Fig. 7. Evaluation of space efficiency with storage taken by the constructed knowledge graph
(a) and consumed time (b). The figure exemplifies the results obtained on D1 since the results
obtained onD2 and D3 are very similar.

Industrial Datasets D. Two production datasets D1 and D2 are collected from produc-
tion lines in a factory of resistance spot welding in Germany. The third dataset D3 is
collected from a laboratory for welding research in Germany. After some processing
they are transformed into relational tables. D1 and D2 contain 4 types of tables: they
are the welding operation table, welding setting table, operation curve tables and refer-
ence curve tables.D1 has 121 attributes andD2 has 147 attributes.D3 contains 5 types
of tables: similar 4 types of tables as inD1 andD2 and an extra table of control param-
eter setting. D3 has 160 attributes. For the evaluation purpose and a fair comparison,
we select 1000 welding operations from each dataset.

Domain Ontology Grsw. The domain ontology models general knowledge of resistance
spot welding. It is projected to a graph Grsw with 210 class nodes and 191 datatype
nodes, and 203 edges for object properties and 191 edges for datatype properties.

Relational Schema Rand Mappings M . The 3 relational schemata are information of
table names and attribute names stored in csv. They are extracted from the three datasets
D1, D2, and D3. The 3 mappings map the table names and attribute names in the rela-
tional schemata to the domain ontology Grsw. These two help to generate the relational
graphs Grs.
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Table 4. The data coverage of all methods is 100%, and thus not displayed in the table. B: base-
line.

Dataset Evaluation metrics Baseline methods/Ontology reshape methods

B1: Gdo B2:
Gmd

B3: Grs B4:
OntoRe-
shape

OntoReshape+

Production1 (D1) Knowledge coverage 1.00 0.36 0.21 0.42 0.74

User-friendliness Succinctness 0.38 0.46 1.00 1.00 1.00

Connectivity 1.00 0.50 1.00 1.00 1.00

Simplicity 0.13 0.17 0.33 0.33 0.33

Production2 (D2) Knowledge coverage 1.00 0.42 0.25 0.42 0.61

User-friendliness Succinctness 0.45 0.57 1.00 1.00 1.00

Connectivity 1.00 0.50 1.00 1.00 1.00

Simplicity 0.13 0.14 0.33 0.33 0.33

Lab data (D3) Knowledge coverage 1.00 0.45 0.27 0.42 0.81

User-friendliness Succinctness 0.51 0.59 1.00 1.00 1.00

Connectivity 1.00 0.50 0.60 1.00 1.00

Simplicity 0.13 0.17 0.33 0.33 0.33

Baselines. We compare the OntoReshape+ algorithm with the traditional approach
(Baseline 1, B1) that directly uses the domain ontology Gdo as the schema for knowl-
edge graph construction, in terms of the four requirements and 7 performance metrics
(Sect. 3). In addition, we also compare with three other state-of-the-art baselines: Base-
line 2 (B2) adopts an established ontology modularisation method [13,23] and uses the
graph Gmd projected from the modular ontology as the knowledge graph schema, which
is computed with a signature of all table and attribute names in R; Baseline 3 (B3) uses
the relational graph Grs as the knowledge graph schema, which is trivially transformed
from the relational schemaR and the mappingMdo; Baseline 4 (B4) is a previous work
of ontology reshaping [60].

Results and Discussion. We now discuss the performance of OntoReshape+ in terms
of the 4 requirements. We show the results evaluated in Table 4 and Fig. 7. We first look
at D1. It can be seen from Fig. 7a that our OntoReshape+ outperforms the RawData,
B1, B2 significantly in terms of the storage space (system efficiency R4), fairly better
than B4, and slightly worse but comparable to B3. In terms of time efficiency (Fig. 7b),
OntoReshape+ significantly outperforms B1 and B2, while achieving comparable per-
formance with respect to B3, B4.

All approaches have 100% data coverage (R1). Thus it is not displayed in the
table. In terms of knowledge coverage (R2), it can be seem that OntoReshape+ outper-
forms B2-B4 significantly, which means OntoReshape+ keep the most knowledge of the
domain ontology. It of course cannot beat B1 because B1 directly uses Gdo as the knowl-
edge graph schema, but B1 suffers substantially in terms of the later two metrics. The
user-friendliness (R3) is decomposed to three metrics. OntoReshape+ outperforms B1
and B2, and is equally good as B3 and B4 concerning succinctness. In respect to connec-
tivity B3 is the worst and the others are equally good. As to simplicity, OntoReshape+

outperforms B1, B2 and B4 and is equally good as B3. Thus, OntoReshape+ either beats
the baselines or is equally good as some. Regarding efficiency (R4), OntoReshape+
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saves time and space for knowledge graph generation when compared to B1, B2, and is
comparable to B3 and B4. When looking at D2 and D3, it can be seem that the results
are quite consistent across the datasets.

In summary, baselines B1, B2, B3 all are too focused either on knowledge cov-
erage or data coverage. B4 and OntoReshape+ are a balance between them, but
OntoReshape+ outperforms B4 in knowledge coverage and is comparable in other
requirements.

6 Related Work

Knowledge graphs provide semantically structured information that can be interpreted
by computing machines [49,62] and are widely used in industries [11,18,37,50].
The methods for knowledge graph construction have also been studied in many
works [12,21,33], with focus on the rule-based approach [15], the combination of rule-
based and similarity-based approach [29], the connection of data silos methods [18].
RDF lifting and lowering [2]. Commercial tools like OpenRefine [46] and OntoRe-
fine [10] can transfer XML or tabular data to knowledge graphs or generate RML [1]
and SPARQL [32]. Yet, they do not provide docking interface to our MLMapping Rea-
soner/Annotator that reasons over domain ontologies, mappings and ML ontology.

The problem of transforming a bigger ontology to a smaller ontology of the same
domain is often referred to as ontology modularisation [4–7,31] and ontology sum-
marisation [35,36,48]. Most of them focus on the problem of selecting a subset of the
ontology that is interesting for the users [30], but they still cannot avoid dummy enti-
ties. Works on ontology reengineering [42,43] also talked about reuse/adjustment of
ontologies, they do not focus on the challenge of creating an ontology that reflect data
specificities.

Previous work on ontology evolution [13] did not focus on the data coverage
requirement. Our previous work on ontology reshaping [60] insufficiently address
the knowledge coverage. Works on ontology bootstrapping [8,24,25] attempt to
align ontologies with relational data schemata by automatically computing mappings
between the ontologies and the data schemata, but the ontologies in these work only
serve as a vocabulary for computing the mapping and new ontologies. Not much infor-
mation from the original ontologies are retained.

In summary, past works insufficiently addressed the requirements R1-R4. Thus, we
propose our work that can better address them overall.

7 Conclusion and Outlook

This work addresses the challenge of sparse knowledge graphs with many dummy
nodes when domain ontologies that reflect general knowledge are directly used as the
knowledge graph schemata. To this end, we proposed the ontology reshaping system
and the algorithm OntoReshape+. We evaluated the approach with a user study and a
system evaluation in terms of four requirements, which shows promising results.

Our system is currently deployed in our Bosch evaluation environment, and we
are considering to push it further into a more advanced and strict evaluation phase of
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production that runs in real-time. To show the benefits, we also plan to demonstrate our
knowledge graph solution with more users and more use cases. In the future, we plan
to study the compatibility between domain ontologies and knowledge graph schemata,
i.e. to ensure that the semantics of the domain is respected in the smaller ontology.
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