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Abstract. Current deep learning methods for object recognition are
purely data-driven and require a large number of training samples to
achieve good results. Due to their sole dependence on image data, these
methods tend to fail when confronted with new environments where even
small deviations occur. Human perception, however, has proven to be
significantly more robust to such distribution shifts. It is assumed that
their ability to deal with unknown scenarios is based on extensive incor-
poration of contextual knowledge. Context can be based either on object
co-occurrences in a scene or on memory of experience. In accordance
with the human visual cortex which uses context to form different object
representations for a seen image, we propose an approach that enhances
deep learning methods by using external contextual knowledge encoded
in a knowledge graph. Therefore, we extract different contextual views
from a generic knowledge graph, transform the views into vector space
and infuse it into a DNN. We conduct a series of experiments to inves-
tigate the impact of different contextual views on the learned object
representations for the same image dataset. The experimental results
provide evidence that the contextual views influence the image represen-
tations in the DNN differently and therefore lead to different predictions
for the same images. We also show that context helps to strengthen the
robustness of object recognition models for out-of-distribution images,
usually occurring in transfer learning tasks or real-world scenarios.
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1 Introduction

How humans perceive the real world is strongly dependent on the context [1,30].
Especially, in situations with poor quality of visual input, for instance caused by
large distances, or short capturing times, context appears to play a major role
in improving the reliability of recognition [43]. Perception is not only influenced
by co-occurring objects or visual features in the same image, but also by expe-
rience and memory [39]. There is evidence that humans perceive similar images
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(a) Duck or rabbit? [26] (b) Young lady or old woman? [2].

Fig. 1. The mental representation for ambiguous images can change based on the
context, although the perceived image is still the same.

differently considering the given context [11]. A famous example are ambiguous
figures as shown in Fig. 1.

Depending on the context, i.e. if it is Easter or Christmas [10], Fig. la can
be either a duck or a rabbit. Likewise, influenced by own-age social biases [37],
Fig. 1b can be either a young lady or an old woman. Humans categorize images
based on various types of context. Known categories are based on visual features
or semantic concepts [6], but may also be based on other information such as
attributes describing their function. Accordingly, neuroscience has shown that
the human brain encodes visual input into individual contextual object represen-
tations [16,18,49], namely visual, taxonomical, and functional [33]. Concretely,
in a visual context, images of a drum and a barrel have a high similarity, as they
share similar visual features. In a taxonomical context, a drum would be similar
to a violin, as they both are musical instruments. And in a functional context,
the drum would be similar to a hammer, since the same action of hitting can be
performed with both objects [8].

Whereas there is much evidence that intelligent machines should also repre-
sent information in contextualized embeddings, deep neural networks (DNNs)
form their object representations based only on the feature distribution of the
image dataset [9,56]. Therefore, they fail if the objects are placed in an incon-
gruent context that was not present in previous seen images [5].

For the scope of this work we investigate the following research questions:

e RQ1 - Can context provided in form of a KG influence learning image rep-
resentations of a DNN;, the final accuracy, and the image predictions?

e RQ2 - Can context help to avoid critical errors in domain changing scenarios
where DNNs fail?

To enable standard DNNs to build contextual object representations, we
provide the context using a knowledge graph (KG) and its corresponding knowl-
edge graph embedding (hk¢). Similar to the process in the human brain, we
conduct experiments with three different types of contexts, namely visual con-
text, taxonomical context, and functional context 3. We provide two versions
of knowledge infusion into a DNN and compare the induction of different con-
textual models in depth by quantitatively investigating their learned contextual
embedding spaces using class-related cosine similarities. In addition we evaluate
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our approach quantitatively by comparing their final accuracy on object recog-
nition tasks on source and target domains and provide insights and challenges.
The structure of this paper is organized as follows: Sect. 6 outlines related work.
In Sect. 3.1 we introduce the three different types of context and an option to
model these views in a contextual knowledge graph. Section 3 shows two ways
of infusing context into a visual DNN. In Sect.4 we conduct experiments on
seven image datasets in two transfer learning scenarios. In Sect. 5 we answer the
research questions and summarize the main insights of our approach.

2 Preliminaries

Contextual Image Representations in the Brain. Cognitive and neuroscience
research has recently begun to investigate the relationship between viewed
objects and the corresponding fMRI scan activities of the human brain. It is
assumed that the primate visual system is organized into two separate process-
ing pathways in the visual cortex, namely, the dorsal pathway and the wventral
pathway. While the dorsal pathway is responsible for the spatial recognition
of objects as well as actions and manipulations such as grasping, the ventral
pathway is responsible for recognizing the type of object based on its form or
motion [52]. Bonner et al. [7] recently showed that the sensory coding of objects
in the ventral cortex of the human brain is related to statistical embeddings
of object or word co-occurrences. Moreover, these object representations poten-
tially reflect a number of different properties, which together are considered to
form an object concept [33]. It can be learned based on the context in which the
object is seen. For example, an object concept may include the visual features,
its taxonomy, or the function of the object [18,49].

Image Representations in the DNN. Recent work has shown that while the
performance of humans, monkeys, and DNNs is quite similar for object-level
confusions, the image-level performance does not match between different
domains [49]. In contrast to visual object representations in the brain, which
also include high level contextual knowledge of concepts and their functions,
image representations of DNNs only depend on the statistical co-occurrence of
visual features and a specific task. We consider the context extracted from the
dataset as dataset bias. Even in balanced datasets, i.e., datasets containing the
same number of images for each class, there still exists imbalance due to overlap
of features between different classes. For instance, it must be taken into account
that a cat and a dog have similar visual features and that in composite datasets
certain classes can have different meta-information for the images, such as illu-
mination, perspective or sensor resolution. This dataset bias leads to predefined
neighborhoods in the visual embedding space, as well as predefined similarities
between distinct classes. In a DNN, an encoder network E(-) maps images @ to
a visual embedding h, = E(x) € R, where the activations of the final pool-
ing layer and thus the representation layer have a dimensionality dg, where dg
depends on the encoder network itself.



Context-Driven Visual Object Recognition Based on Knowledge Graphs 145

Contextual View Extraction Contextual View Infusion
() P
. — el ,mﬂ -
i m
Generic KG _l L] s B . Image Dataset
Visual - -
" o g
| ™
O Taxonomical
[ p |
: . i I
[
Functional | hxgpeiew hygapiow) J

Fig. 2. Our approach to learn contextual image representations consists of two main
parts: 1) the contextual view extraction; and 2) the contezrtual view infusion.

Contextual Representations in the KG. A knowledge graph is a graph of data
aiming to accumulate and convey real-world knowledge, where entities are repre-
sented by nodes and relationships between entities are represented by edges [21].
We define a generic knowledge graph (GKG) as a graph of data that relates
different classes of a dataset based on defined contextual properties. These con-
textual properties can be both learned and manually curated. They bring in
prior knowledge about classes, even those that may not necessarily be present
in the image dataset, and thus place them in contextual relationships with each
other. A KG comprises a set of triples G = H, R, T, where H represents enti-
ties, T'C E x L denotes entities or literal values and R, is a set of relationships
connecting H and 7.

3 Learning Contextual Image Representations

The framework, as shown in Fig.2 consists of two main parts: 1) the contez-
tual view extraction, where task relevant knowledge is extracted from a generic
knowledge graph; and 2) the contextual view infusion, where the contextual view
is infused into the DNN.

3.1 Contextual View Extraction

A knowledge graph can represent prior knowledge encoded with rich semantics
in a graph structure. A GK G encapsulating n contextual views:

GKG D {GKG',GKG?,...,GKG"}

is a collection of heterogeneous knowledge sources, where each contextual view
defines specific relationships between encoded classes. However, for a particular
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a) Visual b) Taxonomical c) Functional
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Fig. 3. Context can occur in various ways. Aligned to insights of how humans perceive
the world, we present three contextual views of a generic knowledge graph, namely the
visual, taxonomical, and functional view.

task only a specific part of a GKG can be relevant. Thus, a subgraph containing
a single contextual view:

GKGV" = query(GKG;view)

or a combination of views is extracted from a GKG. Since object recognition
models are deployed in the real world that differs from their training domain, it
is necessary to encode prior knowledge that is not present in the dataset.

Based on image representations in our brain and on how humans tend to
classify objects, we introduce three distinct types of contextual views as shown
in Fig. 3. The first contextual view is based on visual, the second view is based
on taxonomical, and the third view is based on functional properties.

Visual Context. The visual view (GKGV) describes high-level visual properties
of the classes, for instance properties describing color, shape, or texture. These
properties may or may not be present in the image data set. For example if all
horses in the dataset are white, we want to encode that horses can also occur in
different colors.

Tazonomical Context. The taxonomical view (GKG?) describes class relation-
ships based on hierarchical schemes. A taxonomy is built by experts and can con-
tain categories based on concepts from biology, living place, feeding method, etc.
For instance, a biological taxonomy separate animals from vehicles and divides
them into further subcategories.

Functional Context. The functional view (G K G7) contains properties describing
the function of a class. It is known that tools are categorized in the human brain
based on their function [33]. In that sense properties as hit, rub, or drill would
determine the category of a given tool. However, to broaden the scope, additional
functional properties such as noise, transport, or smell can be introduced.
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Fig. 4. Contextual view infusion. The contextual object recognition model (DNN)
is trained in two different ways: a) using the KG as a trainer, where KGFE, uses
no supervision of the image data; or b) using the KG as a peer, where KGE; uses
supervision of the image data. Images @ are fed into the DNN, producing h,x¢guiew)
which is compared with hggpuicw using the KG-based contrastive loss. In a second
step, a gaussian process (GP) or linear layer is trained to predict the class labels y of
x based on the trained h, (g pgview).

3.2 Contextual View Infusion

When transferring the knowledge from the GKGV*" using a knowledge graph
embedding method (KGE) into a knowledge graph embedding;:

hixgpview = KGE(GKGY*)

graph based relationships are transferred into spatial relationships. Intuitively,
a different context leads to a different representation in the vector space, where
h i pview Teflects all relationships that are modelled in GKGv®.

As illustrated in Fig.4, we present two different ways of learning a visual
context embedding h,grgricwy following Monka et al. [34]. The first one is
DN Nggpuiew, which uses the knowledge graph as a trainer [35] and thus
learns hygppiew without any supervision of image data. The second version
is DN Nggpview, which uses the knowledge graph as a peer and thus learns
hy(kgEview) and h KGEview jointly with additional supervision of image data.

Both versions use the contrastive loss to align the image embedding
h,(kGEgviewy of the images  and the DNN with the knowledge graph embed-
ding hgpeiew of the label information. A batch consists of N augmented train-
ing samples. The KG-based contrastive loss is constructed using the individual
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anchor losses as given by:

N
EKGEview = E EKGE17’i61(771:.

i=1

Within a batch, an anchor image ¢ € {1...2N} is selected that corresponds
to a specific class label y;, where y, points to its knowledge graph embedding
h kg pview ;. Positive images j are all images of the batch that correspond to the
same class label as the anchor i. The numerator in the loss function computes
a similarity score between h g gpview ; and the image embeddings h,xggvicw) ;-
The denominator computes the similarity score between hygggvicw ; and the
image embeddings h, kg, of all images of the other classes in the batch. As a
similarity score, we choose the cosine similarity, which however can be replaced
by others. 1+, € {0,1} is an indicator function that returns 1 iff k # ¢ evaluates
as true, and 7 > 0 is a predefined scalar temperature parameter.

_ 2N exp (h g gpview ;M (xgpview ;/T)
Loapmen: = =152V 11 o it
KGEview,i = N, 1 Z;:l i#j " tyi=y; g SN Lignexp (h g puicw oy (gapvicw) 1/7)

Prediction. To predict the class labels of unknown images it is common to train
a linear layer (LL) or to use a gaussian process (GP) on top of h,xggview). For
G P, we run the whole training dataset through the trained DNN and calculate
the mean and covariance matrices for all the classes in h,xggvicw). GP and
LL, both calculate decision boundaries in h,gggvicw) for all the classes of the
dataset. At inference, where the goal is to predict the class label of an unknown
image, GP or LL assign probabilities if an image belongs to a specific class. The
maximal probability is chosen to be the final prediction.

4 Experiments

The goal of our empirical investigations is to provide an answer to RQ1 and
RQ2. Therefore we conduct experiments with seven datasets in the two specific
domain generalization settings, Cifarl0 and Mini-ImageNet. For both experi-
ments, we build separate GKGs that include three different contextual views,
the visual (GKGV), the taxonomical (GKG?), and the functional (GKGY) view,
respectively. Based on the framework in Sect. 3, we use GKG'*" to learn a con-
textual DNN in combination with image data. We evaluate and compare both
versions of our approach, DNNggpvicw and DNNggpvicw.

4.1 Implementation Details

For both experiments, we use a similar implementation of our approach. From
the GKG, we extract various GKG""“"s using respective SPARQL queries. A
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ResNet-18 architecture is used as a DNN-backend, with a 128-dimensional MLP
as the head. We train all configurations using an ADAM optimizer, a learning
rate of 0.001, no weight decay, and a cosine annealing scheduler with a learn-
ing decay rate of 0.1. The images are augmented via random cropping, random
horizontal flipping, color jittering, random grayscaling, and resizing to 32 x 32
pixels. All models are trained for 500 epochs. For a) DN Nygp, view We trans-
form GKGV*" into vector space using a graph auto encoder (GAE) [28], which
we denote as the DN Ng 4 pview model. Our GAE comprises two convolutional
layers, with a hidden layer dimension of 128. We train the GAE using an ADAM
optimizer with a learning rate of 0.01 for 500 epochs. For b) DNNgggview, a
graph attention network (GAT) [45] is trained in combination with the image
data, denoted as the DN Ng gpview model. The GAT consists of two GAT-layers
with 256 hidden dimensions, 8 heads, and an output dimension of 128. Training
is performed via the same KG-based contrastive loss from the images in addition
to the GKGV*" input. We optimize the GAT using an ADAM optimizer with
a learning rate of 0.001 and no weight decay.

4.2 Experiments on Cifar10

Dataset settings. The source domain Cifarl0 [29] consists of 6000 32 x 32 color
images for each of the 10 classes, namely airplane, bird, automobile, cat, deer,
dog, horse, frog, ship, and truck. The target domain St110 [14] includes 500
96 x 96 color images for each of the 10 classes, namely airplane, bird, automobile,
cat, deer, dog, horse, monkey, ship, and truck.

Knowledge graph construction. We build a GKG that includes the previously
discussed three types of context, as shown in Fig. 3. GKG" contains visual prop-
erties like: hasBackground: air, forest, water; hasColor: black, blue, brown; has-
Part: eyes, legs, wings; hasShape: rectangular, ellipsoid, cross; hasSize: large,
medium, small; or hasTezture: dotted, striped, uniform. GKG! contains a tax-
onomy of the classes using the type-relation. For example, the class Horse is-a
Mammal and is-an Animal or the class Ship is-a Water-vehicle and is-a Vehi-
cle. GKGY defines the function of the class, e.g. properties like: hasMovement:
drive, fly, swim; hasSound: bark, meow, vroom; hasSpeed: fast, medium, slow;
has Weight: heavy, light, middle. Our GKG contains in total 34 classes, 16 object
properties, and 65 individuals. Please note that our GKG is only an example
and we are aware that there are unlimited possibilities of how and what type of
knowledge can be modeled in a knowledge graph.

Evaluation. To evaluate our approach we first investigate the learned embed-
dings, if and how semantic relationships from GKGV*®" are reflected in
hgigview. Second, we compare the individual class accuracies to see how these
relationships influence the final object recognition. Figure 5 shows an analysis: a)
the visual view; b) the taxonomical view; and c¢) the functional view. For every
cell in hgapview we calculate the cosine similarity between the corresponding
nodes, i.e. the classes of the image dataset, and for h,gapgview) we calculate
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a) Visual b) Taxonomical c) Functional d) Generic
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Fig. 5. We compare hgypvicw and h,gapview) based on: a) the visual view; b) the
taxonomical view; ¢) the functional view; and d) the full generic KG. To investigate how
the semantic relationships are reflected in the embeddings, we illustrate the individual
cosine similarities between the classes of the Cifarl0 and the Stl110 dataset.

the class-means of the image representations. Since the goal is to learn con-
textual image classifiers, we investigate if context is transferred to hgrgview
and hy,grgricw), respectively. It can be seen that semantic relationships pro-
vided by the GKG"**" are reflected in hggpvicw. In hgagy, the airplane has
the highest similarity to the truck and the bird, in hgagt, the airplane has the
highest similarity to the ship, in hgsgs, the airplane has the highest similarity
to the automobile, and hgag the airplane has a high similarity to all vehicles.
Further, one notices that taxonomical and generic hgag have two main distinc-
tive groups in the embedding space. In hgapt and hgap vehicles and animals
have a high inter-cluster, but a small intra-cluster variance. For h,gagvicw),
we observe that similarities in the GKG"**" and hggpgview are only partially
reflected. All by (gapview) seem to have a similar underlying pattern of the class
distribution, with minor differences. We think that implicit relations between
class features interfere with the similarities given by hgag and the GKG. Fur-
ther we retrieve different distributions for either Cifar10 or St110. This behaviour
can be explained by the distribution shift between source and target domain.
While the network attempts to separate classes in the training domain Cifarl10,
this separation is less successful in the testing domain St110.
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Table 1. Comparison of the individual class accuracies for the Cifarl0 dataset as
training domain and the Stl10 dataset as testing domain. We compare the contextual
view trained DNNs against their baseline SupSSL.

(a) Results on Cifar10

Cifar10 Airplane | Auto | Bird | Cat | Deer |Dog | Frog | Horse | Ship | Truck | All
SupSSL 95.1 97.0 {91.8 {839 929 857 96.0 93.5 |96.8 |95.9 |92.9
ADNNGag» | —1.2 0.5 |-26|-02 |2.3 -08/-02|-11 | -0.5|-09 | -0.5
ADNNgagt | —0.9 —-0.6|—-1.2|-30.8/-29.8/ —-0.2| —2.2|—-1.6 |—1.5|—-1.3 |—=7.0
ADNNg s | 1.0 0.2 -1.1/1.9 0.1 06 |0.7 |12 —-0.1/-04 04
ADNNgag | —0.7 0.0 |—-23|04 0.6 —0.6|—-1.1{/0.0 03 |—-18 | —0.5
ADNNgar» | —0.6 —-0.3/0.2 0.3 0.1 —-1.0/0.3 |09 0.7 |-0.8 | —0.0
ADNNgape  —09 00 | —17/18 |01 |10 |04 05 | —01/03 0.1
ADNNg  ps | —0.4 0.5 | —-3.0|1.7 1.5 —-04/04 |0.8 04 |-0.1 |0.1
ADNNgar |—1.0 0.3 -1.8|1.2 -0.3 |2.0 |-0.5|1.7 0.0 |0.7 0.2
(b) Results on St110

St110 Airplane | Auto | Bird | Cat | Deer | Dog | Frog | Horse | Ship | Truck | All
SupSSL 85.4 86.9 1824 |56.6 [91.5 |60.5 |— 76.5 | 84.5 741 |T77.6
ADNNgag» | 1.0 0.2 —2.6/3.4 1.2 —4.5| — —-4.8 |-0.6]3.9 —-0.3
ADNNgG gt | 2.4 —-1.0|-15|-10.1 -329|0.2 |— —0.5 |-1.6|—-16 | =52
ADNNg4pr | 1.9 —08 —13/14 | —-24 —-05 — (3.4 (09 33 0.7
ADNNgag |04 0.5 |—19/18 —-15 126 |— —14 |-0.6/|2.1 0.2
ADNNgarv | 0.5 -09 /2.6 |—06 |—0.1 |05 |— 0.5 1.0 |0.0 0.4
ADNNgart | 1.0 —-21/-0519 —-04 |08 |- 0.5 1.6 |3.0 0.6
ADNNg rs | 2.7 —-03|-15/-0.7 |—-1.0 |26 — 0.0 04 |1.8 —0.1
ADNNgar |—1.6 -1.0|-26|-22 -12 |2.8 |— 3.1 1.2 4.3 0.3

In Table1 we compare the final object recognition accuracy of the contex-
tual DNNs, compared to their baseline SupSSL. SupSSL is the same model
trained with the supervised contrastive loss [27] and without auxiliary context.
We observe that for different contextual infusions the overall accuracy is not sig-
nificantly impacted. For Cifarl0 ADN Ng 4 gt with —7.0 is the worst performing
model, whereas ADN N 4 s with 0.4 is the best performing model. We marked
the best performing model for every class in bold. It can be seen that for every
class a different contextual model is outperforming the others. It also shows that
context influences the focus a DNN puts on predicting a specific class. Table 1b
shows the relative accuracies of the contextual models on the St110 dataset. Note
that the models are only trained on Cifarl0 data. The goal of that domain gen-
eralization scenario is to test the robustness of the models. When evaluated on
the target domain, it can be observed that almost in every contextual model
the relative accuracy is increased compared to the baseline with no contextual
knowledge. In scenarios where the domain changes, we observe strange phenom-
ena occurring such that the model with the second worst performance DN N, 4
for the class Aircraft of the Cifarl0 dataset is the model with the second best
performance for Aircraft on Stl10. However, for most of the classes, we see a
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Fig. 6. We compare hgygvicw and hygagviewy, as well as hg apview and hygarview)
based on, a) the visual view, b) the taxonomical view, ¢) the functional view, and d)
the full generic KG. To investigate how the semantic relationships are reflected in the
embeddings, we illustrate the individual cosine similarities between the classes of the
Mini-ImageNet dataset.

trend that the best performing model for a class in Cifarl0 tends to perform
also better on the target domain.

4.3 Experiments on Mini-ImageNet

Dataset settings. We use Mini-ImageNet, a subset of the ImageNet dataset, as
our training domain. It contains 100 classes, each having 600 images of size 84
x 84. As testing domain we use ImageNetV2 [40] comprising 10 new test images
per class, ImageNet-Sketch [46] with 50 images per class, ImageNet-R [19], which
has 150 images in the style of art, cartoons, deviantart, and ImageNet-A [20]
with 7.500 unmodified real-world examples.

Knowledge Graph Construction. Our GKG is build using the three contextual
views as depicted in Fig.3. GKGY contains visual properties, e.g. hasColor:
black, blue, brown; hasTexture: dotted, striped, uniform; hasSize: large, medium-
large, small; and hasShape: ellipsoid, quadratic, rectangular. GKG? contains a
taxonomy of the classes using the type-relation. Following DBpedia [3], the class
Malamute is-a Dog, is-a Mammal, is-an Animal, is-an Fukaryote, and is-a Species.
GKGY defines the function of a class with properties like: hasSpeed: fast, static,
slow; has Weight: heavy, light, middle; or hasTransportation: goods, none, people.
Our GKG contains in total 166 classes, 14 object properties, and 183 individuals.

Evaluation. Due to the difficulty of deeply investigating 100 x 100 class similari-
ties, we provide a qualitative overview of the embedding spaces. Figure 6 shows a
qualitative comparison of h jc;gricw and by g gpview) of a) the visual view; b) the
taxonomical view; ¢) the functional view; and d) the generic knowledge graph.
Complementing the experiment in Sect. 4.2, we illustrate the class similarities
of hgar and h,gar) learned using image data as supervision. Interestingly, it
can be observed that the similarities in hgar and hgap follow a similar pat-
tern, but hgag seems to have a stronger contrast. However, when investigating
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Table 2. Comparison of the contextual view models and their SupSSL baseline on
the Mini-ImageNet and its derivatives, Mini-ImageNet (Mini), ImageNetV2 (V2),
ImageNet-Sketch (Sketch), ImageNet-R (R), and ImageNet-A (A).

ImageNet Mini | V2 Sketch | R A
SupSSL 58.6 [43.0 |20.3 4.3 | 1.2
ADNNgag» | —0.3 0.0 —-0.6 [0.2 | —0.2
ADNNgapt | —19.6 | —13.7| —8.8 | —2.8 0.0
ADNNgps | —5.2 | =33 | —23 | —0.70.3
ADNNgae |0.8 1.6 —-0.6 |—-0.1|-0.1
ADNNgar» | 0.9 2.3 0.2 00 |0.3
ADNNgart (1.3 0.6 0.1 0.1 ]0.0
ADNNgars | 0.4 0.4 0.0 —-0.1/-0.1
ADNNgar |0.5 0.6 0.1 0.0 0.0

NERTer e ..

SupSSL Horizontal_bar Tucan Miniskirt Oboe Frying_pan Goose Catamaran
GAE Visual Horizontal _bar Toucan 1Pod Hair_slide Wok Goose Catamaran

GAE Taxonomical House finch American_robin King _crab  Walker hound Frying_pan  House finch aw!
GAE Functional Goose Tucan King_crab Malamute Frying_pan Goose Catamaran
GAE Generic American_robin Tucan Gog Dalmatian Wok Goose Catamaran
GAT Visual ~ House finch Tucan King_crab Tibetan_mastiff Wok Goose Catamaran
GAT Taxonomical American robin Tucan King_crab Malamute Frying_pan Goose Catamaran
GAT Functional Pucan Tucan King_crab Stage Frying_pan Goose Catamaran
GAT Generic Horizontal_bar Tucan Pencil_box TPucan Frying_pan Goose Catamaran

Fig. 7. Contextual Predictions of DNNgag (GAE) and DN Ngar (GAT) and their
contextual view on Mini-ImageNet. The contextual view influences the image repre-
sentation and therefore the final prediction for the same input image.

the learned image representations in h,gar) it is hard to spot the differences
between the individual contextual models.

As depicted in Table2 DNN{ , 5 and DNNéAE are outperformed by the
baseline SupSSL and the other models with different contextual views by a
large margin. In contrast to the Cifarl0 experiment where the least performing
model is only 8% worse than the baseline, in Mini-ImageNet the worst is around
34%. Further, we see that DN Ng 47+ does not suffer from constraints given by
GKG@G'. This finding confirms our assumption that a joint training can soften the
constraints of the GKG.

Similar to the example of ambiguous figures in Fig. 1, our approach enables
DNNs to interpret the same image in various ways using contextual views given
by a knowledge graph. The results in Fig.7 show that for out of distribution
images the contextual views play a major role for giving reasonable predictions.
The idea is that some class confusions are not that critical as others. In that
sense, for some tasks it is uncritical to confuse a goose with a house finch as they
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are both part of the bird family, however confusing a music instrument (oboe),
with a dog (malamute) could lead to problems. We also see that DNNgag
(GAE) and DN Ngar (GAT) do not necessarily predict the same image based on
the given context. We believe that further research is needed w.r.t. investigating
how to best incorporate context in combination with image data.

5 Discussion and Insights

With our work, we provided a method to infuse context in form of GKGV*% into
DNNs for visual object recognition. However, knowledge infusion is not straight-
forward, as problems of machine learning, such as hyper-parameter selection,
weight initialization, or dataset dependence, strongly influence the learned rep-
resentations. Regarding RQ1 - Can context provided in form of a KG influence
learning image representations of a DNN, the final accuracy, and the image pre-
dictions? - we list the insights obtained from our investigations:

— GKGV*®" defines class-relationships. We showed that various contextual
views can be extracted from a GKG and that different views lead to different
relationships between classes of the dataset.

— hygpview needs to reflect GKGY*". The embedding method itself also
influences the hyxgpvice and the performance of the final prediction model.
Context can get lost when transferring GKGV*" into hygpvicw. Hard con-
straints either in GKGV**" or produced by the KGE-method, e.g. to represent
dissimilar classes in hyggview together, can drastically reduce the prediction
accuracy.

— hgapview is only partially reflected in h,gapview). Since data-driven
approaches have a strong dependence on the dataset distribution, hgggview
only influences b, (G agvicw) to form a hybrid representation. We see that data
augmentation weakens the dataset bias and helps to align h,gagview) With

hGAEview .

— Joint training reduces the impact of GKG. Both the learned h,(kqE,)
and the achieved accuracy values are only slightly affected by the induced
GKG. Neither the qualitative evaluation of h,(xgg,) nor the quantitative
evaluation based on accuracy show any significant contextual changes.

— Context shifts the focus on learning specific classes. We assume that
the context constraints the DNN and its hypothesis space. It is known that
DNNs tend to memorize spurious correlations that can lead to catastrophic
errors in the real world. We think that the task of our contextual models is
to prevent exactly these errors. In our experiments, we showed that specific
contextual models performed better on specific classes. We assume that con-
text can shift the overall interest of a DNN to predict a certain class.
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— Context rather influences individual image predictions. Similar to
the proposed motivation of how humans interpret ambiguous figures we see
context influencing the prediction of difficult or undefinable images in the
dataset. Regarding RQ2 - Can context help to avoid critical errors in domain
changing scenarios where DNNs fail?

— Context makes more robust against domain changes.

It can be seen that almost every contextual model increases its relative accu-
racy compared to the baseline when evaluated on the target domain. Moreover,
contextual models that performed better on the source dataset tend to perform
better if domain change occurs. We argue that GK GV regularizes the strong
dependency on the source domain and thus increases the performance on the
target domain.

6 Related Work

Contextual information has always been of great interest for improving computer
vision systems. We structure related work into implicit-contextual visual models,
explicit-contextual visual models, and contextual knowledge graph embeddings.

Implicit-Contextual Visual Models. Contextualize relationships between visual
features that occur in the image itself. They are used for object priming, where
the context defines a prior on the detection parameters [43] or for object
detection and segmentation, where boosting is used to relate objects in an
image [44]. Wu et al. [51] improved object recognition by processing object
regions and context regions in parallel. To overcome the drawback of small recep-
tive fields from standard CNNs, extensions that incorporate visual features from
far image regions [24,25] or alternative architectures, such as vision transformers
(ViTs) [53] have been established recently. Moreover, Gao et al. [17] proposed
that all modern DNNs are part of the implicit-contextual models since they
aggregate contextual information over image regions.

Ezxplicit-Contextual Visual Models. Use higher level information like object co-
occurrences or semantic concept relationships. They induce additional contex-
tual information that is either not in the dataset or cannot be automatically
extracted by the DNN [22]. To create explicit context based on object relations,
most methods use scene graphs which describe a scene based on symbolic repre-
sentations of entities and their spatial and semantic relations. Scene graphs have
been applied to the task of collective or group activity recognition [13,15], object
recognition [55,56], object detection [12,32] and visual question answering [42].
Label graphs [23] apply fine-grained labels to an image and are used to improve
object recognition and reasoning over object relationships [4]. Semantic scene
graphs extend scene graphs by textual descriptions and fine-grained labels of a
scene [31]. Context-aware zero-shot learning for object recognition [54] or com-
positional zero-shot learning methods [36] add observed visual primitive states
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(e.g. old, cute) to objects (e.g. car, dog) to build an embedding space based on
visual context. However, scene correlations need to be addressed very carefully,
as implicit-contextual models can heavily depend on learned contextual relation-
ships that are only valid for a specific dataset configuration. Therefore, work was
already done to decorrelate objects and their visual features to improve model
generalization [41].

Contextual Knowledge Graph Embeddings. Whereas our approach extracts the
contextual views in a previous step before the actual knowledge graph embed-
ding, there exist works that create contextualized KG embeddings based on the
full KG. Werner et al. [50] introduced a KG embedding over temporal contextu-
alized KG facts. Their recurrent transformer enables to transform global KGEs
into contextual embeddings, given the situation-specific factors of the relation
and the subjective history of the entity. Ning et al. [38] proposed a lightweight
framework for the usage of context within standard embedding methods. Wang
et al. [47] presented a deep contextualized knowledge graph embedding method
that learns representations of entities and relations from constructed contex-
tual entity-relation chains. Wang et al. [48] introduced the contextualized KG
embedding method (CoKE). They propose to take the contextual nature of KGs
into account, by learning dynamic, flexible, and fully contextualized entity and
relation embeddings.

7 Conclusion and Future Work

In this work, we proposed a framework for context-driven visual object recog-
nition based on knowledge graphs. We qualitatively and quantitatively investi-
gated how different contextual views, as well as their embedding and their infu-
sion method, influence the learned DNN. Further, we have seen that contextual
models tend to have a minor impact on the final accuracy, but a major impact
on how individual classes or images are represented and predicted. In particu-
lar, for out of distribution data, where data-driven approaches suffer from less
knowledge, contextual image representations help to constrain the hypothesis
space, leading to more reasonable predictions. However, there are still challenges
to be faced. We conducted intensive research about a possible context infusion
approach and emerging challenges. On the one hand, we have the implementa-
tion of the infusion method, which itself heavily depends on modeling choices,
weight initialization, as well as network and hyper-parameter selection. On the
other hand, there is a strong dependence on the image data, which originally
comes with an initial dataset bias. This dataset bias limits the ability to influence
image data representations and thus predictions influenced by prior knowledge.
However, our work showed that with deeper investigations of all the influencing
parameters knowledge-infused learning is a promising approach to build context-
driven and future intelligent systems.
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